Low Frequency Noise and Health Effects

Mariana Alves-Pereira, PhD
Lusófona University, Lisbon, Portugal

Nuno Castelo Branco, MD
Center for Human Performance, Alverca, Portugal

June 2011
“Noise” is a pressure wave.

Because acoustic phenomena are waves, they require 2 parameters to be described:

Amplitude & Frequency
Waves with different amplitudes.

Amplitude of acoustical phenomenon is measured in Decibel (dB).

For acoustical phenomena to be heard, it must have a certain amplitude.
Definitions

Frequency, measured in Hertz, is the number of cycles in each second.

Humans do not equally perceive all frequencies.
• Audible frequencies: 20 Hz – 20 000 Hz
• Inaudible: Infrasound, < 20 Hz
 Ultrasound, > 20 000 Hz

Most sensitive frequencies: 500 Hz – 8000 Hz
Erroneous assumption:

“What you can’t hear won’t hurt you”

Host must perceive agent of disease otherwise it will not be harmful? (!)

This is the logical conclusion that follows from the (false) assumption that acoustical phenomena only affect the human via the auditory system.
To protect against hearing loss and other maladies induced via the auditory system, such as annoyance.

No need to measure that which is not heard because “what you can’t hear won’t hurt you”.

Must concentrate on the frequencies which will cause hearing impairment (500 Hz – 8000 Hz).

Hence, the use of dBA unit which simulates human hearing
dBA Unit

- dBA provides a measure of the amplitude as if being heard by the human auditory system.
- dBA unit is commonly used in legislation.
- The A-filter simulates human hearing.
- dBA de-emphasizes all acoustical phenomena below 500 Hz, and ignores infrasound.

Is this, then, the most appropriate unit to be measuring low frequency noise?
Cockpit 72.1 dBA
Stopped Train 71.4 dBA
Automobile @ 120Km/h 71.2 dBA

Theoretically, these are comparable acoustical environments...

... But are they really?
The usefulness of dBA

Cockpit vs. Stopped Train

Amplitude (dB) vs. Frequency (Hz)

dBLin: 83.2, 92.0

dBA: 72.1, 71.4

dBLin = dB without A filter, i.e. linear
The usefulness of dBA

Cockpit vs. Car @ 120 km/h

dBLin: 83.2, 100.8

dBA: 72.1, 71.4

dBA unit is inadequate for measuring low frequency noise (LFN), < 500 Hz
Our Team’s Research

• Began in 1980
 (today called vibroacoustic disease or VAD project)
• Initially focused on aeronautical technicians.
 -- Epilepsy among 10% (vs. 0.2%)
 -- Neurological changes
 Auditory Brainstem Evoked Potentials
 P300 Evoked Potentials
 Asymmetry of brain potentials
 -- Humor and cognition: aggressiveness, depression, memory and attention disorders.
1984 – National Public Health Award

1987 – Death of patient / aircraft technician

Autopsy findings:
- 2 tumors (kidney and brain)
- Lung fibrosis
- Abnormal thickening of cardiovascular structures (pericardium and valves)

Disease not restricted to the Central Nervous System
Cardiovascular Thickening

• Can be seen through echo-imaging

• Echocardiograms in aircraft technicians revealed thickening of cardiovascular structures, namely the pericardium.

• The pericardium is a sac that surrounds the heart and is <0.5 mm thick. In VAD patients it can reach 2.3 mm.

• Thickening due to LFN exposure is unrelated to pericarditis – no diastolic dysfunction is present, absence of inflammatory processes.
Scanning microscopy of Control & VAD patient pericardia. Note: scales in both images are equal.
Pericardial thickening is due to the abnormal growth of organized collagen.

- 1992 – begin using animal models (Wistar rats)

- Thickening of blood vessel walls
- Fibrosis of respiratory system structures
- Disruption of ciliary populations
- Fusion of actin-based structures
Blood Vessel Wall Thickening

Thickening of media layer decreases lumen size and can ultimately cause ischemia...

... An Organic Basis for Cardiovascular Disease
Thickening Alveolar Walls

Thickening caused by abnormal proliferation of collagen. Note: scales in both images are equal.
LFN-Induced Pathology

Elastic-Continuum (Balloon) Model

Cytoskeleton Tensegrity-Based Model
Characterized by the abnormal production of organized collagen.

Can be preliminarily assessed with echo-imaging techniques.

Develops over years of exposure to LFN.

Has been identified in several occupational groups (aeronautical, heavy industry, factories).

Has been identified in several environmental settings, such as in LFN-rich homes.
No anti-technology sentiments;

Wind Turbines are welcome additions to modern technological society;

Data is scrutinized under one, and only one, agenda - pure scientific inquiry;

Not a report arguing against the implementation of Wind Turbines;

Not members of accredited firm that conducted the acoustical measurements;

The consulting activities provided to these families are of a purely academic and scientific nature and hence are pro bono.
Situation in 2007

“WT” Home
Wind Turbine Home With Same Wind Speed (5.4 Km/h)

- Residual - Night (08/09Apr07)
- Environmental - Night (11/12Apr07)
- Environmental - Day (15Apr07)
WT Case

• WT began operation in Nov 2006
• Mar 2007: letter from school (12-yr-old):
 “...It seems that [the child] has lost interest, makes a lesser effort, as if he were permanently tired”.

P300 of 12-year-old:

 Jun 2007: 352 ms (norm: 300 ms)
 Sep 2007 (after 2-month away from home): 322 ms
WT Case

Echocardiogram Score (April 2007)

- father 1
- mother 1
- 12 year old son 1

TODAY:

- Wife and children no longer live in this house. P300 of child is normal.
- Husband must stay to tend to thoroughbred Lusitanian horses. His health is visibly deteriorating, with increased cognitive impairment and severe noise intolerance.
Standing Court Order:

- WT No. 2, closest to the home, at 322 m was ordered to be shut down.
- All other 3 WT were ordered to be shut down during evening (8-11 pm) and night hours (11 pm – 7 am).
Inability to place the hoof flatly on the ground (tip-toeing, boxy foot or club foot)

Espartaco, Case 4
Born 02May09,
father: Zircão,
mother: Vassoura.

Engenheiro, Case 5
Born 17May09,
father: Zircão,
mother: Zizi.
Espanaco, Case 4
Born 02May09

Right forelimb
Normal alignment
Hoof wall-to-floor angle: >115°.

Left forelimb
Severe EFLD.
Hoof wall-to-floor angle: <115°
Effects on Horses

- Ligament biopsy / Corrective surgery
- Tissue analysis

Check for LFN-induced signs, i.e.
- Check for abnormal collagen growth in the absence of inflammatory processes

Because court proceedings require that the illness take its natural course in order to be assessed, corrective surgery was not performed on all cases.
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Corrective Surgery</th>
<th>Origin</th>
<th>Abnormal Collagen Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Canela 26FEB07</td>
<td>YES</td>
<td>Born on farm Father: Operário Mother: Juvita</td>
<td>YES</td>
</tr>
<tr>
<td>2. Desplante 02FEB08</td>
<td>YES</td>
<td>Acquired (age: 15 days) Father: Importante Mother: Vassoura</td>
<td>YES</td>
</tr>
<tr>
<td>3. Dondoca 04APR08</td>
<td>NO</td>
<td>Acquired (age: 14 mo.) Father: Urânio Mother: Scalabitana</td>
<td>NO</td>
</tr>
<tr>
<td>4. Espartaco 02MAY09</td>
<td>NO</td>
<td>Born on farm Father: Zircão Mother: Vassoura</td>
<td>YES</td>
</tr>
<tr>
<td>5. Engenheiro 17MAY09</td>
<td>NO</td>
<td>Born on farm Father: Zircão Mother: Zizi</td>
<td>YES</td>
</tr>
</tbody>
</table>
Excessive LFN exposure cause abnormal collagen growth in the absence of inflammatory processes.

Subjective complaints, such as annoyance and sleep disturbance can depend on previous noise exposure history.

Noise exposure histories are essential for a scientifically valid clinical surveys.

Safe distances are, as yet, undetermined.

dBA units are inadequate for assessing LFN.
Thank you for your attention!

m.alvespereira@gmail.com