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Abstract: Environmental consequences of electricity generation are often determined using 12 

average emission factors. However, as different interventions are incrementally pursued in 13 

electricity systems, the resulting marginal change in emissions may differ from what one would 14 

predict based on system-average conditions. Here, we estimate average emission factors and 15 

marginal emission factors for CO2, SO2, and NOx from fossil and non-fossil generators in the 16 

Midcontinent Independent System Operator (MISO) region during years 2007 – 2016. We 17 

analyze multiple spatial scales (all MISO; each of the 11 MISO states; each utility; each 18 

generator) and use MISO data to characterize differences between the two emission factors 19 

(average; marginal). We also explore temporal trends in emissions factors by hour, day, month, 20 
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and year, as well as the differences that arise from including only fossil generators versus total 21 

generation. We find, for example, that marginal emission factors are generally higher during late-22 

night and early morning compared to afternoons. Overall, in MISO, average emission factors are 23 

generally higher than marginal estimates (typical difference: ~20%). This means that the true 24 

environmental benefit of an energy efficiency program may be ~20% smaller than anticipated if 25 

one were to use average emissions factors. Our analysis can usefully be extended to other regions 26 

to support effective near-term technical, policy and investment decisions based on marginal 27 

rather than only average emission factors. 28 

TOC Art 29 

 30 

1. Introduction 31 

In the United States, electricity generation is a major contributor to air pollution, with 32 

important consequences for health, the environment, and climate. The U.S. Environmental 33 

Protection Agency (EPA) estimates that in 2014, electricity generating units (EGUs) 34 

contributed 37% of CO2, 67% of SO2, 13% of NOx, and 3% of primary PM2.5 nation-wide 35 

emissions.1,2 SOx and NOx emissions from EGUs contribute to secondary PM2.5 formation, 36 

adding to the health and environmental consequences of EGUs. In 2014, coal-fired EGUs 37 

alone generated ~39% of the electricity in the U.S., and contributed to 77%, 97%, 86%, and 38 

81%, respectively, of CO2, SO2, NOx and PM2.5 total electricity emissions.1,3 Those pollutants 39 
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contribute to acid rain, climate change, regional haze, crop damage, and health impacts from 40 

ambient air pollution.4 41 

There are multiple approaches to estimating power plant emissions.5 Different methods and 42 

data sources can generate substantially different estimates --- an important consideration for 43 

environmental policy. A simple and straightforward approach is to calculate average emissions 44 

factors (EFs) for a region and time-frame as the ratio between total emissions and total 45 

electricity generated. Another approach is to model marginal EFs based on bid-dispatch 46 

simulations of electricity generators;6-11 such models use costs and engineering constraints to 47 

predict which EGU would increase/decrease output if the total energy demand at that time 48 

were marginally higher/lower. The degree of sophistication of these models varies. Models 49 

such as Integrated Planning Model (IPM), PROMOD, Electric Generation Expansion Analysis 50 

System (EGEAS) and PLEXOS are proprietary, complex, often provide little flexibility, and 51 

are time consuming to run; they require substantial input data, and like any model depend on 52 

assumptions and simplifications necessary to simulate a complex system.12-16 Other approaches 53 

include the Fuel Type Assumed (FTA) method, Locational Marginal Price (LMP) based 54 

approaches and machine learning algorithms.17-20 Here, we use an empirical approach for 55 

estimating average EF (AEF) and average marginal EF (AMEF). Our approach, which was 56 

described in Siler-Evans et al. (2012),21 is distinct in using data (historical observations) rather 57 

than models to estimate marginal EFs. The approach of using historical data has been applied 58 

in other studies as well.22-25 EFs calculated using historical data are most appropriate for short 59 

to medium term analysis in electricity system, and are less appropriate for long term 60 

predictions for which fundamental aspects of the electricity system (e.g., fuel mix; 61 

infrastructure) may shift. Several applications of marginal emissions and impact factors have 62 
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been used to determine the emissions saving and damage reductions associated with 63 

interventions in the electricity sector, such as solar and wind,26,27 energy efficient 64 

buildings,28,29 storage,30 and vehicle charging,31,32 and wastewater treatment from coal power 65 

plants.33  66 

While several studies have investigated average and marginal EF7-9,19,21,34,35, only one prior 67 

study has implemented the empirical approach employed here: Siler-Evans et al. (2012)21 68 

calculated AEF and AMEFs for the U.S. electricity system and for the eight North American 69 

Electric Reliability Corporation (NERC) regions. Those authors recommend that the method 70 

be applied to Regional Transmission Organizations (RTOs) rather than NERC regions, since 71 

RTOs provide a better representation of electricity dispatch; our approach follows that 72 

suggestion. We build on the Siler-Evans et al. (2012)21 research, extending it in several ways: 73 

(1) We focus on an RTO rather than NERC regions. RTOs use bid-based markets to determine 74 

economic dispatch, and so are an appropriate scale for our analyses. (2) Siler-Evans et al. 75 

(2012)21 consider fossil generation as proxy for total generation. That aspect is a limitation of 76 

their approach; with increasing amounts of renewables in the grid, renewables may be at the 77 

margin for some hours or levels of demand. We instead use total MISO generation (rather than 78 

fossil-only generation) when calculating EFs. (3) By focusing on a single RTO, we are able to 79 

assess with greater detail EFs’s variability in time and space, thereby lending new insights into 80 

the environmental impacts of electricity generation. (4) We explore how EFs may vary by 81 

state, corporation, fuel-type, and EGU.  82 

Average versus marginal EFs may differ for many reasons. In general, at a given time, the 83 

mix of fuels for the EGUs at the margin --- i.e., the last few units that will meet demand --- 84 

may differ from the average electricity mix in that hour. Furthermore, for a single EGU, AEF 85 
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and AMEF may differ because the boiler is ramping up or down, or because the efficiency of 86 

emission control technologies may depend on the EGU’s power output. 87 

Our results for MISO, years 2007-2013, reveal that AMEFs are often lower than the 88 

respective AEFs. The consequences of this finding for policy includes, for example, that the 89 

true emission reduction attributable to an energy efficiency program may be lower than the one 90 

a decision maker would assume using AEFs. Similarly, this result would indicate that an 91 

efficiency program may be less cost-effective than anticipated (since cost-effectiveness metrics 92 

are often computed as the ratio between the cost of the program and the emissions saved). 93 

 94 

2. Methods and Data 95 

Here, we employ an empirical approach for estimating AEF and AMEF for the 96 

Midcontinent Independent System Operator (MISO). MISO is one of the seven U.S. RTOs. 97 

MISO includes 15 US states, and serves ~42 million people (13% of U.S. population). In 2015, 98 

MISO included 176,600 MW of electric capacity, generating ~667,800 GWh (~16% of U.S. total 99 

electricity generation). In the Supplemental Information (SI), we provide the generation statistics 100 

for MISO for years 2007 through 2016 (Figure S1).  101 

The geography of MISO changed in 2014: prior to 2014, MISO constituted 11 upper 102 

Midwest states and was called “Midwest ISO”. In 2014, a south region (4 additional states; see 103 

maps in Figure S2) was integrated to form “Midcontinent ISO”. For geographic consistency, 104 

most results presented here are only for years 2007–2013; that approach provides an assessment 105 

that includes well defined and consistent regional boundaries. Results for years 2014-2016, 106 

which include EGUs in the new regional boundaries, are in section 1 of the SI (Figure S3 and 107 

Table S1). 108 
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We use emission data from the Continuous Emissions Monitoring System (CEMS) 109 

database from the U.S. EPA.36 CEMS provides hourly emissions of CO2, SO2, and NOx, and 110 

energy generation for generators with nameplate capacity of 25 MW or larger. We complement 111 

this information with MISO databases that provide hourly imports, exports, total actual load, and 112 

wind generation.37 Net imports account for ~6% of the total demand in MISO. The share for 113 

“other” generation sources (nuclear, hydroelectricity, and other renewable generation) is 114 

calculated by subtracting fossil and wind generation from total generation. 115 

We calculate two EFs for a given time period or geography: AEFs and AMEFs. AEFs are 116 

the summation of hourly emissions (ET) divided by the summation of hourly generation (GT) for 117 

that time period and geography. 118 

 Marginal EFs vary by time and geography; AMEF represents the average of the marginal 119 

EF for a certain time period and over some spatial extent. AMEF are computed by calculating 120 

the hourly change in emissions (∆E) and change in generation (∆G), for each time step. Then, a 121 

linear regression is fitted to identify the relationship between those two variables (the change in 122 

emissions and in generation). The slope of linear regression (βo) between those two values is the 123 

AMEF.  124 

In addition to estimating AEF and AMEF for MISO during 2007 - 2016, we also 125 

investigate spatial and temporal variability in EFs at multiple temporal and spatial scales. We do 126 

so for the following scenarios: the 11 Midwest states in MISO; all corporations owning one or 127 

more generators in a case-study state (Minnesota) and, as a separate analysis, in the entire MISO 128 

(in SI); and, at the level of individual EGUs. We also estimate AEFs and AMEFs by fuel type, 129 

for coal and for natural gas, to understand the average marginal response of fuel-specific 130 

generators to changes in system demand. In general, we employ total generation when estimating 131 
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AEFs and AMEFs. One exception, caused by limited data availability, is that state and utility-132 

level EFs include fossil-only generation as a proxy for total generation. Net imports are 133 

subtracted from MISO total load to obtain net generation. Electricity exchanges and trading at 134 

the state and utility scales are not considered here because they are tracked and available only at 135 

the RTO level. Fuel specific AMEFs are calculated by aggregating emissions by fuel type at each 136 

time step and performing regression between change in fuel specific emissions and change in 137 

total generation. For each EGU bidding in the MISO grid, we calculate AMEFs via regression 138 

between unit specific hourly emissions and gross generation output. Coal and natural gas EGUs 139 

constitute most of the units that bid in MISO and hence are a focus of our analysis.  140 

We also explore trends in AEFs and AMEFs in the MISO region as a function of total 141 

system demand. To do so, we bin the data from years 2007 through 2013 into 20 demand level 142 

bins. Each bin contains 5% of the data occurring at lowest to highest system demand hours. 143 

Separate regressions of ∆Fuel Generation vs ∆Total Generation are then performed for each bin. 144 

We also analyze trends in AEFs and AMEFs temporally by time-of-day, day-of-week, month 145 

and year (for years 2007 to 2016). To assess the differences between AEF and AMEF, we 146 

calculate their relative difference as: 147 

% difference = ������������ � ∗ 100 148 

3. Results 149 

3.1 Comparison of AEF and AMEFs 150 

Emissions estimates for MISO. Figure 1 presents data for years 2007 – 2013. Each data-151 

point is an hourly change in MISO total pollutant emissions and power generation. The slope of 152 

the best-fit line is the AMEF. Figure 1 also displays the median data-point (red icon), the IQR 153 
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ellipse (centered at the median data-point, displaying 25th and 75th percentiles parallel and 154 

perpendicular to the best-fit line; yellow ellipse), and the P10-P90 ellipse (centered at the median 155 

data-point, displaying 10th and 90th percentiles parallel and perpendicular to the best-fit line; 156 

dashed line). As expected, for data in Figure 1, ~25% of the data-points are inside the IQR 157 

ellipse, ~60% are inside the P10-P90 ellipse. 158 

 159 

Figure 1. Linear regression for hourly changes in power generation and pollutant 160 

emissions, for Midcontinent ISO, years 2007 to 2013. Each dot represents a one-hour difference. 161 

We also show the median value (red icon), the interquartile (yellow) and P10-P90 ellipse (dashed 162 

line), the best-fit line (black line), and 95% confidence intervals on the best-fit line (dashed blue 163 

lines, nearly indistinguishable from the best-fit line). 164 

Table 1 summarizes the results displayed in Figure 1. Figure S3 and Table S1 provides 165 

the results for years 2014-2016 (i.e., after the change in geography). Overall, and among 166 

pollutants, we find that AEFs are 17%-22% higher than the respective AMEF. This general 167 

pattern holds across pollutants and years (see Table S2).  168 
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For comparison, we also computed these estimates when including only fossil generation 169 

(which was the approach taken in Siler-Evans et al. (2012)21). When doing so, we find that the 170 

difference between EFs remain approximately consistent, but the AEFs are ~22% greater and 171 

AMEFs are ~27% greater than EFs when calculated using change in total generation. 172 

We also estimate AEFs and AMEFs by fuel type, which we report in the SI, Tables S3, 173 

S4, and S5. We find that relative to other fuels, the AMEFs from coal-fired generators are 174 

generally closer to emission factors for entire MISO region. This result is likely because the 175 

average share of marginal generation from the coal fleet is greater than the natural gas fleet 176 

(~57% coal vs ~21%). For emissions from coal generators only, the AEF is 28% [CO2], 18% 177 

[SO2], and 27% [NOx] larger than AMEF. For natural gas generators only, the AEF is 274% 178 

[CO2], 78% [SO2], and 182% [NOx] lower than AMEF.   179 

Table 1. Comparison between AEF and AMEF estimates for the MISO region using data 180 

from 2007 to 2013.  181 

Pollutant AEF 
(Kg/MWh) 

AMEF 
(Kg/MWh) 

EFs % 
Difference 

CO2 739 597 -19% 

SO2 1.97 1.63 -17% 

NOx 0.727 0.567 -22% 

 182 

State emissions estimates. State Implementation Plans (SIPs) often require an accurate 183 

metric to assess emission benefits from different energy efficiency strategies. We have calculated 184 

AEF and AMEF for the state boundaries within MISO, as shown in Figure 2. For this portion of 185 

the analysis, we rely on total fossil generation when computing the emissions factors because 186 

there is no total generation data by state at the hourly level. For each state, this analysis considers 187 
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only emissions and generation occurring within that state. We find that in most cases, AMEFs 188 

are lower than AEFs (which is consistent with results given above). Differences between AEF 189 

and AMEF are larger for states that have a large portion of their generation provided by natural 190 

gas (see Figure S4); not surprisingly, natural gas tends to be more on the margin in those states. 191 

Correlation between CO2 AMEF, SO2 AMEF and NOx AMEF is shown in Figure S5.  192 

 193 

Figure 2. AEF and AMEF by state for CO2, SO2 and NOx for years 2007–2013. The 194 

percentages reported show the relative difference between AEF and AMEF (positive values 195 

mean AMEF>AEF). States are displayed from highest to lowest electricity generation share of 196 

MISO’s total generation. The electricity generation share for each state is shown along the x-axis 197 
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for the CO2 plot. In combination, fossil generation from these states accounted for 82% of MISO 198 

total generation.  199 

Utility level estimates: We compute separate EFs for utilities that operate in MISO. At 200 

the utility scale, AEFs and AMEFs are important as they may be used to inform utilities’ 201 

strategies to reduce their emissions (for example, on decisions of how to allocate emission 202 

allowances under cap & trade programs, or for monitoring and evaluation of climate mitigation 203 

or other emission reduction programs). Here, as a case-study, we calculate AEF and AMEF for 204 

utilities operating generators in Minnesota in year 2012. Differences between AEF and AMEFs 205 

for all utilities bidding in MISO in the year 2012 are presented in Figure S6. Minnesota’s 206 

emission reduction goals include a 40% reduction in CO2 emission rate; we use year 2012 as an 207 

illustrative example given that it was the baseline year for US EPA’s former Clean Power Plan 208 

rule. Here too, owing to limitations in data availability, we employ the approach from Siler-209 

Evans, and use total fossil generation instead of total generation. In Figure 3 we provide the 210 

resulting estimates for each utility operating generators in Minnesota. In this figure, the 211 

Minnesota Municipal Power Agency is atypical in that it has slightly negative AMEF for NOx. It 212 

has the only must-run combined cycle natural gas unit with a large nameplate capacity (334.5 213 

MW) and with installed NOx control equipment. Non-linear emission changes attributable to 214 

shifting usage of NOx control equipment could explain the negative AMEF for NOx.  215 
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 216 

Figure 3. AEFs and AMEFs for utilities operating EGUs in Minnesota in 2012 that have 217 

a generation share > 1%. The percentages inside the figure represent the relative difference 218 

between AEF and AMEF (positive values indicate AMEF>AEF). X-axis percentages (e.g., 58% 219 

for Xcel Energy) indicate percentage generation share of Minnesota’s total generation; utilities 220 

are listed in order of that percentage.  221 

Generator level analysis: We calculate AEF and AMEF for each generator bidding in MISO 222 

during years 2007 to 2013, which are shown in Figure 4. Over this time period, on average, 273 223 

natural gas generators and 219 coal generators bid into MISO each year. In most cases, we find 224 

(consistent with results given above,) that AMEFs are smaller than AEFs: median differences 225 

between AEFs and AMEFs for coal are -4.9% for CO2, -0.1% for SO2, and -3.3% for NOx; for 226 

natural gas, median differences are -6.3% for CO2, -5.5% for SO2 and -10.0% for NOx. The 227 

Page 12 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 13 

AMEF-AEF percent difference is less than -20% (i.e., is more-negative than -20%) for CO2 for 228 

5% of coal generators and 6% of natural gas generators, for SO2 for 7% (coal) and 10% (natural 229 

gas) generators, and for NOx for 27% (coal) and 29% (natural gas) generators. Those results 230 

emphasize that there can be noteworthy differences between AEF and AMEF estimates when 231 

applied at the generator level.  232 

On average, we find that AMEF-AEF differences are larger for SO2 and NOx than for CO2 and 233 

are larger for coal than for natural gas. This result may reflect the nature of SO2 and NOx 234 

emission control equipment. Further analysis (see SI, section 4) reveals that for coal generators, 235 

the AEF and AMEF difference for CO2 is larger for smaller generators than for larger generators 236 

(Figures S11 & S13). However, the reverse holds for natural gas (Figures S12 & S14). This 237 

observation likely reflects generator characteristics such as heat rate, capacity factor and age 238 

(Figure S15).  An explanation for the coal units could be that old smaller (i.e., low capacity 239 

factor) units run at higher heat rates compared to their design heat rates, whereas new larger units 240 

(high capacity factor) typically run at heat rates at or below their design heat rates. As generators 241 

age, their heat rates degrade and the smaller units tend to cycle and follow load more. Hence, 242 

coal units with low capacity factors have higher AEF, and the larger difference between metrics. 243 

Additionally, EFs seem to be inversely correlated with share of electricity (see Figures S16 and 244 

S17), suggesting that share of electricity is greater for lower EF units than for higher EF units.  245 
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 246 

Figure 4. Boxplot showing distribution of EF differences among coal units (n=219, average 247 

per year, 2007-2013) and natural gas units (n=273 on average).  248 

3.2 AEFs and AMEFs by system demand 249 

In Figure 5 (A and B), we show the share of average and average marginal fuel source with 250 

respect to total generation in MISO. Coal is the dominant marginal fuel at low demand hours; 251 

natural gas is the dominant marginal fuel at high demand hours. The share of other fossil fuels to 252 

marginal generation is minor. Nuclear is generally not on the margin (which is consistent with 253 

output being ~constant and/or with changes in output being relatively uncorrelated with changes 254 

in demand). The share of generation from wind is greater during low demand hours (since wind 255 

blows significantly during night in the Midwest) than high demand hours, and the marginal 256 

generation from wind is negative (i.e., on average, wind generation decreases in hours when 257 

system total generation increases) during low demand hours. Two possible reasons for negative 258 

marginal generation could be: (1) load curtailment or (2) a decrease in generation because of less 259 

wind. We do not have hourly curtailment data needed to rigorously investigate the reason behind 260 
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negative marginal generation. However, curtailment appears not to be a large issue for MISO: a 261 

U.S. Department of Energy report38 estimates wind curtailment in MISO at <6% of potential 262 

wind energy generation. Curtailment was a larger issue for some other grids, notably the ERCOT 263 

grid, which experienced >15% curtailment in 2009 (but steps taken to address the issue reduced 264 

wind curtailment, to only 1% in 2015). Recent MISO programs have strived to make wind 265 

dispatchable like other fuels via, e.g., the Dispatchable Intermittent Resources program.39,40 266 

Parts C and D of Figure 5 shows how AEF and AMEFs for CO2, SO2 and NOx vary with 267 

MISO total generation.  NOx AMEF is relatively constant across demand. Figure S18 shows 268 

similar plot for year 2008 (wind data for year 2007 is not available) and 2013 for comparison; 269 

there is not much change in marginal generation from coal over the course of 6 years, and 270 

average share of wind has increased but its contribution to marginal load decreased substantially 271 

in the year 2013.   272 
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 273 

Figure 5. (A) Average generation by fuel. (B) Average marginal generation by fuel. (C) 274 

AEFs as a function of total generation (D) AMEFs as a function of total generation. (E) Kernel 275 

density distribution for total generation. All results are for MISO, for all data-points during years 276 

2007–2013.  277 

3.3 Temporal analysis 278 

We explore variation of AMEFs (and AEF; Figure S19) by time of day, days of week, 279 

month and year (Figure 6). AMEF are higher-than-average during late-night and early morning 280 

hours when electricity demand is lower and coal is more often on the margin: AMEF is about 281 

73% [CO2], 125% [SO2], and 55% [NOx] higher at midnight compared to noon. The AMEFs are 282 

higher on the weekends compared to weekdays. AMEFs are highest in spring and fall, when 283 

Page 16 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 17 

demand is low and coal is more often on the margin. Time-of-day trends are more pronounced in 284 

summer (Figure S20). Fuel-specific AEF and AMEFs by time-of-day are in Figure S21 and 285 

Table S6. From 2007 through 2013, AMEF for SO2 decreased by 41%; changes were smaller for 286 

NOx (26% decrease) and CO2 (9% increase). From 2014-2016, AMEF for SO2 decreased by 287 

40%, NOx decreased by 6% and CO2 increased by 3%. Reduction in SO2 and NOx can be 288 

attributed in part to U.S. EPA regulations to reduce air pollution from the electricity sector. AEFs 289 

do not show pronounced variations by time of day, day of week and months (Figure S19). As 290 

seen in Figure 6, average MISO AMEFs were, for SO2, lower after 2013 than before 2013; for 291 

CO2, AMEFs were slightly higher after 2013 than before; for NOx, they were mostly unchanged.  292 

 293 

Figure 6. Time of day, days of week, and monthly trends in AMEFs for years 2007 294 

through 2013. Yearly trends shown here for 2007 through 2016. The discontinuity in the 295 

yearly plot is to highlight the change of MISO geography after 2013.  296 

4. Discussion  297 
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We investigated differences between AEF and AMEFs at different spatial and temporal 298 

scales for MISO. In general, AEFs tend to overestimate emissions – and thus potential emissions 299 

benefits from interventions in the power sector - relative to AMEFs.  300 

The deployment of renewable energy sources such as wind and solar will help reduce 301 

emissions by displacing energy from fossil-fired generators. However, if a decision-maker uses 302 

AEF to understand the current contribution of renewables or other interventions in the electricity 303 

system, she will likely overestimate the emission benefits that are derived from such 304 

interventions. As noted above, for MISO, if emission-reduction benefits (e.g., from wind or solar 305 

generation, or from energy efficiency programs) are calculated using AEFs, the benefits are on 306 

average overestimated by 19% for CO2, 17% for SO2 and 22% for NOx. Those values vary by 307 

time-of-day, fuel, company, and state.  Results presented here could help energy efficiency 308 

programs become more cost-effective, for example, by consideration of how AMEF varies in 309 

time and space. 310 

We show that AMEFs are higher during early morning and late evening hours – times of 311 

day when electricity demand is usually low and, historically for the Midwest, when wind energy 312 

is abundant. Further harnessing of the wind potential during these hours could provide 313 

substantial emission reductions and is of great importance for strategies such as Active Power 314 

Controls (APC)41 for efficiently harnessing wind energy during those times. Further, following 315 

Siler Evans et al. (2012)21, we calculated the daytime (8am – 5pm) and nighttime (7pm – 7am) 316 

AMEFs and compared them to system AMEF and AEF; we find that AEFs overestimate AMEFs 317 

by ~35% during daytime and by ~20% during nighttime (Table S7). For AMEF, differences 318 

between nighttime-average and daytime-average are ~14%.  319 
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This paper advances current understanding in a few key ways. We show that estimating 320 

recent AMEFs can be done using data rather than models. Siler Evans et al. (2012)21 and Graff 321 

Zivin et al. (2014)24 looked at the temporal and spatial differences between AEFs and AMEFs 322 

for NERC regions. We adopted Siler Evans’ recommendation of focusing on RTOs, and in doing 323 

so uncovered important differences between AEF and AMEFs by time and geography (by state, 324 

corporation, and individual EGUs). In most cases, our analyses were based on total generation 325 

rather than using fossil generation as a proxy for total generation (exceptions include state and 326 

utility analyses, for which data limitations forced us to use fossil generation as a proxy for total 327 

generation). Electricity trading at the state and utility level could impact state and utility 328 

emission factor estimates42-44, but is not explicitly incorporated here. 329 

Multiple methods exist for estimating AMEFs. Our approach has the advantage of being 330 

based on empirical data rather than models. On the other hand, that means it may be 331 

inappropriate to use findings here unmodified if considering major shifts in the electricity 332 

infrastructure. Since results presented here are based on historical data, they likely would not be 333 

directly applicable for predicting long-term changes in the electricity grid.  334 

Coal is frequently the marginal fuel source, especially during low-demand hours; it is not 335 

merely a base-load fuel that sits apart from marginal generation. In MISO, coal generators 336 

operate on margin and follow the load profile. In the future, if MISO continues to shift away 337 

from coal, that aspect could change.  338 
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