Dearborn, Michigan

NOISE-CON 2008
2008 July 28-31

Simple guidelines for siting wind turbines to prevent health risks¹

By:

George W. Kamperman, INCE Bd. Cert. Emeritus
Kamperman Associates, Inc.
george@kamperman.com

Richard R. James, INCE
E-Coustic Solutions
rickjames@e-coustic.com

Revision: 1.0

Industrial scale wind turbines are a familiar part of the landscape in Europe, U.K. and other parts of the world. In the U.S., however, similar industrial scale wind energy developments are just beginning operation. The presence of industrial wind projects will increase dramatically over the next few years given the push by the Federal and state governments to promote renewable energy sources through tax incentives and other forms of economic and political support. States and local governments in the U.S. are promoting what appear to be lenient rules for how industrial wind farms can be located in communities, which are predominantly rural and often very quiet. Studies already completed and currently in progress describe significant health effects associated with living in the vicinity of industrial grade wind turbines. This paper reviews sound studies conducted by consultants for governments, the wind turbine owner, or the local residents for a number of sites with known health or annoyance problems. The purpose is to determine if a set of simple guidelines using dBA and dBC sound levels can serve as the ‘safe’ siting guidelines. Findings of the review and recommendations for sound limits will be presented. A discussion of how the proposed limits would have affected the existing sites where people have demonstrated pathologies apparently related to wind turbine sound will also be presented.

Background

A relatively new source of community noise is spreading rapidly across the rural U.S. countryside. Industrial grade wind turbines, a common sight in many European countries, are now being promoted by Federal and state governments as the way to minimize coal powered electrical energy and its effects on global warming. But, the initial developments using the newer 1.5 to 3 MWatt wind turbines here in the U.S. has also led to numerous

¹ COPYRIGHT © notice for this section
The contents of the NOISE-CON 2008 Proceedings have been reproduced from the original author-submitted files. The authors are solely responsible for the technical content and opinions expressed therein. The opinions expressed are not necessarily those of the Institute of Noise Control Engineering of the USA, Washington, DC or those of the Acoustical Society of America © 2008, The authors have given their permission to include the entire text of the paper as part of this document.

Permission is hereby granted for any person to reproduce a fractional part of any paper herein provided that permission is obtained from its author(s) and credit is given to the author(s) and the INCE Noise-con 2008 Proceedings. Notification to INCE/USA is also required.
complaints from residents who find themselves no longer in the quiet rural communities they were living in before the wind turbine developments went on-line. Questions have been raised about whether the current siting guidelines being used in the U.S. are sufficiently protective for the people living closest to the developments. Research being conducted into the health issues using data from established wind turbine developments is beginning to appear that supports the possibility there is a basis for the health concerns. Other research into the computer modeling and other methods used for determining the layout of the industrial wind turbine developments and the distances from residents in the adjacent communities are showing that the output of the models should not be considered accurate enough to be used as the sole basis for making the siting decisions.

The authors have reviewed a number of noise studies conducted in response to community complaints for wind energy systems sited in Europe, Canada, and the U.S. to determine if additional criteria are needed for establishing safe limits for industrial wind turbine sound immissions in rural communities. In several cases, the residents who filed the complaints have been included in studies by medical researchers who are investigating the potential health risks associated with living near industrial grade wind turbines 365 days a year. These studies were also reviewed by the authors to help in identifying what factors need to be considered in setting criteria for ‘safe’ sound limits at receiving properties. Due to concerns about medical privacy, details of these studies are not discussed in this paper. Current standards used in the U.S. and in most other parts of the world rely on not-to-exceed dBA sound levels, such as 50 dBA, or on not-to-exceed limits based on the pre-construction background sound level plus an adder (e.g. L90A + 5 dBA).

Our review covered the community noise studies performed in response to complaints, research on health issues related to wind turbine noise, critiques of noise studies performed by consultants working for the wind developer, and research/technical papers on wind turbine sound immissions and related topics. The papers are listed in Tables 1-4.

Table 1-List of Studies Related to Complaints

<table>
<thead>
<tr>
<th>Study</th>
</tr>
</thead>
</table>
Table 2- List of Studies related to Health

<table>
<thead>
<tr>
<th>Study</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nina Pierpont, “Wind Turbine Syndrome – Abstract” from draft article and personal conversations. www.ninapierpont.com</td>
<td></td>
</tr>
<tr>
<td>Barbara J. Frey and Peter J. Hadden, “Noise Radiation from Wind Turbines Installed Near Homes, Effects on Health” (2007)</td>
<td></td>
</tr>
<tr>
<td>Robin Phipps, “In the Matter of Moturimu Wind Farm Application, Palmerston North, Australia,” March 2007</td>
<td></td>
</tr>
<tr>
<td>WHO European Centre for Environment and Health, Bonn Office, “Report on the third meeting on night noise guidelines,” April 2005</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-List of Studies that review Siting Impact Statements

<table>
<thead>
<tr>
<th>Study</th>
<th>Details</th>
</tr>
</thead>
</table>

Table 4-List of Research and Technical papers included in review process

<table>
<thead>
<tr>
<th>Study</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julian T. and Jane Davis, “Living with aerodynamic modulation, low frequency vibration</td>
<td></td>
</tr>
</tbody>
</table>
and sleep deprivation - how wind turbines inappropriately placed can act collectively and destroy rural quietude,” Proceedings of Second International Meeting on Wind Turbine Noise, Lyons, France, Sept. 2007

M. Schwartz and D. Elliott, Wind Shear Characteristics at Central Plains Tall Towers, NREL 2006

Discussion

After reviewing the materials in the tables; we have arrived at our current understanding of wind turbine noise and its impact on the host community and its residents. The review showed that some residents living as far as 3 km (two (2) miles) from a wind farm complain of sleep disturbance from the noise. Many residents living one-tenth this distance (300 m. or 1000 feet) from a wind farm are experiencing major sleep disruption and other serious medical problems from nighttime wind turbine noise. The peculiar acoustic characteristics of wind turbine noise immissions cause the sounds heard at the receiving properties to be more annoying and troublesome than the more familiar noise from traffic and industrial factories. Limits used for these other community noise sources do not appear to be appropriate for siting industrial wind turbines. The residents who are annoyed by wind turbine noise complain of the approximately one (1) second repetitive swoosh-boom-swoosh-boom sound of the turbine blades and “low frequency” noise. It is not apparent to these authors whether the complaints that refer to “low frequency” noise are about the audible low frequency part of the swoosh-boom sound, the one hertz amplitude modulation of the swoosh-boom sound, or some combination of both acoustic phenomena.

To assist in understanding the issues at hand, the authors developed the ‘conceptual’ graph for industrial wind turbine sound shown in Figure 1. This graph shows the data from one of the complaint sites plotted against the sound immission spectra for a modern 2.5 MWatt wind turbine; Young’s threshold of perception for the 10% most sensitive population (ISO 0266); and a spectrum obtained for a rural community during a three hour, 20 minute test from 11:45 pm until 3:05 am on a windless June evening in near Ubly, Michigan a quiet rural community located in central Huron County. (Also called: Michigan’s Thumb.) It is worth noting that this rural community demonstrates how quiet a rural community can be when located at a distance from industry, highways, and airport related noise emitters.

During our review we posed a number of questions to ourselves related to what we were learning. The questions (italics) and our answers are:

Do National or International or local community Noise Standards for siting wind turbines near dwellings address the low frequency portion of the wind turbine’s sound immissions? No! State and Local governments are in the process of establishing wind farm noise limits and/or

2 Emissions refer to acoustic energy from the ‘viewpoint’ of the sound emitter, while immissions refer to acoustic energy from the viewpoint of the receiver.
wind turbine setbacks from nearby residents, but the standards incorrectly presume that limits based on dBA levels are sufficient to protect the residents.

Do wind farm developers have noise limit criteria and/or wind turbine setback criteria that apply to nearby residents? Yes! But the Wind Industry recommended residential wind turbine noise levels (typically 50-55 dBA) are too high for the quiet nature of the rural communities and may be unsafe for the nearest residents. An additional concern is that some of the methods for implementing pre-construction computer models may predict sound levels that are too low. These two factors combined can lead to post-construction complaints and health risks.

Are all residents living near wind farms equally affected by wind turbine noise? No, children, people with pre-existing medical conditions, especially sleep disorders, and the elderly are generally the most susceptible. Some people are unaffected while some nearby neighbors develop serious health effects caused by exposure to the same wind turbine noise.

How does wind turbine noise impact nearby residents? Initially, the most common problem is chronic sleep deprivation during nighttime. According to the medical research documents, this may develop into far more serious physical and psychological problems.

What are the technical options for reducing wind turbine noise immission at residences? There are only two options: 1) increase the distance between source and receiver, and/or 2) reduce the source sound power immission. Either solution is incompatible with the objective of the wind farm developer to maximize the wind power electrical generation within the land available.

Figure 1-Generalized Sound Spectra vs. perception and rural community L_{90A} background 1/3 octave SPL

Is wind turbine noise at a residence much more annoying than traffic noise? Yes, researchers have found that “Wind turbine noise was perceived by about 85% of the respondents even when the calculated A-weighted SPL were as low as 35.0–37.5 dB. This could be due to the
presence of amplitude modulation in the noise, making it easy to detect and difficult to mask by ambient noise.” [JASA 116(6), December 2004, pgs 3460-3470, “Perception and annoyance due to wind turbine noise — a dose-relationship” Eja Pedersen and Kerstin Persson Waye, Dept of Environmental Medicine, Goteborg University, Sweden]

Why do wind turbine noise immissions of only 35 dBA disturb sleep at night? This issue is now being studied by the medical profession. The affected residents complain of the middle to high frequency swooshing sounds of the rotating turbine blades at a constant repetitive rate of about 1 hertz plus low frequency noise. The amplitude modulation of the swooshing sound changes continuously. The short time interval between the blade’s swooshing sounds described by residents as sometimes having a thump or low frequency banging sound that varies in amplitude up to 10 dBA. This may be a result of phase changes between turbine emissions, turbulence, or an operational mode. The assumptions about wall and window attenuation being 15 dBA or more may not be sufficiently protective considering the relatively high amplitude of the wind turbine’s low frequency immission spectra.

What are the typical wind farm noise immission criteria or standards? Limits are not consistent and may vary even within a particular country. Example criteria include: Australia — the lower of 35 dBA or L_90 + 5 dBA, Denmark — 40 dBA, France L_90 + 3 (night) and L_90 + 5 (day), Germany — 40 dBA, Holland — 40 dBA, United Kingdom — 40 dBA (day) and 43 dBA (night) or L_90 + 5 dBA, Illinois — 55 dBA (day) and 51 dBA (night), Wisconsin — 50 dBA and Michigan — 55 dBA. Note: Illinois statewide limits are expressed only in nine contiguous octave frequency bands and no mention of A-weighting for the hourly L_{eq} limits. Typically, wind turbine noise just meeting the octave band limits would read 5 dB below the energy sum of the nine octave bands after applying A-weighting. So the Illinois limits are approximately 50 dBA (daytime 7 AM to 10 PM) and 46 dBA at night, assuming a wind farm is a Class C Property Line Noise Source.

What is a reasonable wind farm sound immission limit to protect the health of residences? We are proposing an immission limit of 35 dBA or L_{90A} + 5 dBA whichever is lower and also a C-weighted criteria to address the impacted resident’s complaints of wind turbine low frequency noise: For the proposed criteria the dBC sound level at a receiving property shall not exceed L_{90A} + 20 dB. In other words, the dBC operating immission limit shall not be more than 20 dB above the measured dBA (L_{90A}) pre-construction nighttime background sound level. A maximum not-to-exceed limit of 50 dBC is also proposed.

Why should the dBC immission limit not be permitted to be more than 20 dB above the background measured L_{90A}? The World Health Organization and others have determined a sound emitter’s noise that results in a difference between the dBC and dBA value greater than 20 dB will be an annoying low frequency issue.

Is not L_{90A} the minimum dBA background noise level? This is correct, but it is very important to establish the statistical average background noise environment outside a potentially impacted residence during the quietest (10 pm to 4 am) sleeping hours of the night. This nighttime sleep disturbance has generated the majority of the wind farm noise complaints throughout the world. The basis for a community’s wind turbine sound immission limits would be the minimum 10 minute nighttime L_{90A} plus 5 dB for the time period of 10 pm to 7 am. This would become the Nighttime Immission Limits for the proposed wind farm. This can be accomplished with one or several 10 minute measurements during any night when the atmosphere is classified stable with a light wind from the area of the proposed wind
farm. The Daytime Limits (7 am to 7 pm) could be set 10 dB above the minimum nighttime L_{90A} measured noise, but the nighttime criteria will always be the limiting sound levels.

A nearby wind farm meeting these noise immission criteria will be clearly audible to the residents occasionally during nighttime and daytime. Compliance with this noise standard would be determined by repeating the initial nighttime minimum nighttime L_{90A} tests and adding the dBC (L_{eqC}) noise measurement with the turbines on and off. If the nighttime background noise level (turbines off) was found to be slightly higher than the measured background prior to the wind farm installation, then the results with the turbines on must be corrected to determine compliance with the pre-turbine established sound limits.

The common method used for establishing the background sound level at a proposed wind farm used in many of the studies in Table 1 was to use unattended noise monitors to record hundreds of ten (10) minute measurements to obtain a statistically significant sample over varying wind conditions or a period of weeks. The measured results for daytime and nighttime are combined to determine the statically average wind noise as a function of wind velocity measured at a height of ten (10) meters. This provides an enormous amount of data but the results have little relationship to the wind turbine sound immission or turbine noise impact in nearby residents. The purpose of this exhaustive exercise often only demonstrates how much noise is generated by the wind. In some cases it appears that the data is used to ‘prove’ that the wind noise masks the turbine’s sound immissions.

The most glaring fault with this argument is shown during the frequent nighttime conditions with a stable atmosphere when the wind turbines generate the maximum electricity and noise while the wind at ground level is calm and the background noise level is low. This is the condition of maximum turbine noise impact on nearby residents. It is the condition which most directly causes chronic sleep disruption. Furthermore, this methodology is usually faulty, as much of the wind noise measured by unattended sound monitors is the wind noise generated at the microphone windscreen resulting in totally erroneous results. (See studies in Table 3, esp. Van den Berg)

Are there additional noise data to be recorded for a pre-wind turbine noise survey near selected dwellings? Yes, The measuring sound level meter(s) need to be programmed to include measurement of L_{eqA}, L_{10A}, L_{eq90A} and L_{eqC} plus start time & date for each 10 minute sample. These results will be utilized to help validate the L_{90A} data. For example, on a quiet night one might expect L_{10A} less L_{90A} or L_{eqA} to be less than 10 dB. On a windy night or day the difference may be more than 20 dB. There is a requirement for measurement of the wind velocity near the sound measurement microphone continuously throughout each ten (10) minute recorded noise sample. The ten (10) minute average of the wind speed near the microphone shall not exceed 2 m/s (4.5 mph) and the maximum wind speed for operational tests shall not exceed 4 m/s (9 mph). It is strongly recommended that observed samples be used for these tests.

Is there a need to record weather data during the background noise recording survey? One weather monitor is required at the proposed wind farm on the side nearest the residents. The weather station sensors are at standard ten (10) meter height above ground. It is critical the weather be recorded every ten (10) minutes synchronized with the clocks in the sound level recorders without ambiguity in the start and end time of each ten (10) minute period. The weather station should record wind speed and direction, temperature, humidity and rain.
Why do Canada and some other countries base the permitted wind turbine noise immission limits on the operational wind velocity at the 10m height wind speed instead of a maximum dBA or $L_{90} + 5$ dBA immission level? First, it appears that the wind turbine industry will take advantage of every opportunity to elevate the maximum permitted noise immission level to reduce the setback distance from the nearby dwellings. Including wind as a masking source in the criteria is one method for elevating the permissible limits. Indeed the background noise level does increase with surface wind speed. When it does occur, it can be argued that the increased wind noise provides some masking of the wind farm turbine noise emission. However, in the middle of the night when the atmosphere is defined as stable (no vertical flow from surface heat radiation) the layers of the lower atmosphere can separate and permit wind velocities at the turbine hubs to be 2 to 2.5 times the wind velocity at the 10m high wind monitor but remain near calm at ground level. The result is the wind turbines can be operating at or close to full capacity while it is very quiet outside the nearby dwellings.

This is the heart of the wind turbine noise problem for residents within 3 km (approx. two miles) of a wind farm. When the turbines are producing the sound from operation it is quietest outside the surrounding homes. The PhD thesis of P.G. van den Berg “The Sounds of High Winds” is very enlightening on this issue. See also the letter by John Harrison in Ontario “On Wind Turbine Guidelines.”

What sound monitor measurements would be needed for enforcement of the wind turbine sound ordinance? A similar sound and wind 10 minute series of measurements would be repeated at the pre-wind farm location nearest the resident registering the wind turbine noise complaint, with and without the operation of the wind turbines. An independent acoustics expert should be retained who reports to the County Board or other responsible governing body. This independent acoustics expert shall be responsible for all the acoustic measurements including instrumentation setup, calibration and interpretation of recorded results. An independent acoustical consultant shall also perform all pre-turbine background noise measurements and interpretation of results to establish the Nighttime (and Daytime if applicable) industrial wind turbine sound immission limits. At present the acoustical consultants are retained by, and work directly for, the wind farm developer.

This presents a serious problem with conflict of interest on the part of the consultant. The wind farm developer would like to show the significant amount of wind noise that is present to mask the sounds of the wind turbine immissions. The wind farm impacted community would like to know that wind turbine noise will be only barely perceptible and then only occasionally during the night or daytime.

Is frequency analysis required either during pre-wind farm background survey or for compliance measurements? Normally one-third octave or narrower band analysis would only be required if there is a complaint of tones immission from the wind farm.

Proposed Sound Limits
The simple fact that so many residents complain of low frequency noise from wind turbines is clear evidence that the single A-weighted (dBA) noise descriptor used in most jurisdictions for siting turbines is not adequate. The only other simple audio frequency weighting that is standardized and available on all sound level meters is the C-weighting or dBC. A standard sound level meter set to measure dBA is increasingly less sensitive to low frequency below 500 Hz (one octave above middle-C). The same sound level meter set to
measure dBC is equally sensitive to all frequencies above 32 Hz (lowest note on grand piano). It is well known that dBC readings are more predictive of perceptual loudness than dBA readings if low frequency sounds are significant.

We are proposing to use the commonly accepted dBA criteria that is based on the pre-existing background sound levels plus a 5 dB allowance for the wind turbine’s immissions (e.g. L90A +5) for the audible sounds from wind turbines. But, to address the lower frequencies that are not considered in A-weighted measurements we are proposing to add limits based on dBC. The Proposed Sound Limits are presented in the text box at the end of this paper.

For the current industrial grade wind turbines in the 1.5 to 3 MWatt range, the addition of the dBC requirement will result in an increased distance between wind turbines and the nearby residents. For the generalized graphs shown in Figure 1, the distances would need to be approximately double the current distance. This will result in setbacks in the range of 1 km or greater for the current generation of wind turbines if they are to be located in rural areas where the L90A background sound levels are 30 dBA or lower. In areas with higher background sound levels, turbines could be located somewhat closer, but still at a distance greater than the 305 m (1000 ft.) or less setbacks commonly seen in U.S. based wind turbine standards set by many states and used for wind turbine developments.
Proposed Wind Turbine Siting Sound Limits

1. **Audible Sound Limit**
 a. No Wind Turbine or group of turbines shall be located so as to cause an exceedance of the pre-construction/operation background sound levels by more than 5 dBA. The background sound levels shall be the L_{90A} sound descriptor measured during a pre-construction noise study during the quietest time of evening or night. All data recording shall be a series of contiguous ten (10) minute measurements. L_{90A} results are valid when L_{10A} results are no more than 15 dBA above L_{90A} for the same time period. Noise sensitive sites are to be selected based on wind development’s predicted worst-case sound emissions (in L_{eqA} and L_{eqC}) which are to be provided by the developer.
 b. Test sites are to be located along the property line(s) of the receiving non-participating property(s).
 c. A 5 dB penalty is applied for tones as defined in IEC 61400-11.

2. **Low Frequency Sound Limit**
 a. The L_{eqC} and L_{90C} sound levels from the wind turbine at the receiving property shall not exceed the lower of either:
 1) $L_{eqC} - L_{90A}$ greater than 20 dB outside any occupied structure, or
 2) A maximum not-to-exceed sound level of 50 dBC (L_{90C}) from the wind turbines without other ambient sounds for properties located at one mile or more from State Highways or other major roads or 55 dBC (L_{90C}) for properties closer than one mile.
 These limits shall be assessed using the same nighttime and wind/weather conditions required in 1.a. Turbine operating sound immisions (L_{eqA} and L_{eqC}) shall represent worst case sound immisions for stable nighttime conditions with low winds at ground level and winds sufficient for full operating capacity at the hub.

3. **General Clause**
 a. Not to exceed 35 dBA within 30 m. (approx. 100 feet) of any occupied structure.

4. **Requirements**
 a. All instruments must meet ANSI or IEC Precision integrating sound level meter performance specifications.
 b. Procedures must meet ANSI S12.9 and other applicable ANSI standards.
 c. Measurements must be made when ground level winds are 2 m/s (4.5 mph) or less. Wind shear in the evening and night often results in low ground level wind speed and nominal operating wind speeds at wind turbine hub heights.
 d. IEC 61400-11 procedures are not suitable for enforcement of these requirements except for the presence of tones.