Understanding the Trade-off: Environmental Costs and Benefits of Industrial Wind Energy Development (with Focus on Eastern US)

Dan Boone & Rick Webb
Virginia Wind
www.VaWind.org

Special Session on Bats and Wind Turbines

38th North American Symposium on Bat Research, Scranton, PA
October 24, 2008
Wishful thinking?
Mountaineer Wind Energy Center, Tucker County, WV -
top of wind turbine rotor is 105 meters above ground (~350 feet)
About 93% of potential U.S. wind energy capacity is located west of the Mississippi River.

U.S. Wind Energy Projects (As of 09/30/2008)

National Total Power Capacities (MW)
Existing 21,017
Under Construction 8,383

Sources of Total GHG Emissions in the United States by Sector, 2006 - in CO2 Equivalent

Note: Excludes emissions from U.S. territories.

Mount Storm is a 1,662 MW facility operating at an 80% capacity factor.

To generate the same annual energy yield as this one coal-fired power plant with 2 MW turbines, there would need to be:

2,200 turbines operating at 30% annual capacity factor.

However, at least 4,400 2-MW wind turbines would be needed to equal the Mount Storm facility’s summer-time output — due to low wind conditions during the 3 months when demand for electricity is highest (i.e., wind turbines operate on average with a 15% capacity factor in summer).
Inverse temporal relationship between wind power and electricity demand in the Mid-Appalachian states

The diffuse nature of the wind resource

Wind projects in the Appalachian Mountains are typically built in strings of about seven turbines per mile along ridgelines.

200 2-MW turbines would be required each year just to match West Virginia’s projected growth in electricity generation. This would require about 30 miles of ridgeline development per year.

See: www.eia.doe.gov/oiaf/aeo/electricity.html
Environmental Benefits

- Reduced CO2 emissions
- Energy independence
- Improvements in air quality
- Reduced use of coal
- Obviate need for new conventional power plants

Environmental Concerns

- Direct wildlife mortality – esp. bats
- Indirect wildlife impacts – e.g., displacement and noise effects
- Habitat Loss and Fragmentation
- Impact upon Public Lands
- Aesthetic Impacts
- Opportunity Loss (usurps more effective and less impactful options)
Environmental Benefits?

- **Energy supply**
 - Energy independence
 - Reduced use of coal

- **Air quality improvement**
 - SO2 and NOx
 - CO2
Environmental Benefits?

• Energy supply
 – Energy independence
 – Reduced use of coal

• Air quality improvement
 – SO2 and NOx
 – CO2

“The choice . . . is not between windmills and untouched nature. It's between windmills and the destruction of the planet's biology on a scale we can barely begin to imagine.”

Bill McKibben, Orion, 2003

Which takes us to the real questions:

what are we actually getting for the tradeoff?

can Appalachian wind development make a real difference?

or is this just wishful thinking - that diverts our attention from real solutions?
Environmental Benefits?

- **Energy supply**
 - Energy independence
 - Reduced use of coal
- **Air quality improvement**
 - SO2 and NOx
 - CO2

Percentages of U.S. electricity generation by generator type:

- **Coal** 52%
- **Nuclear** 20%
- **Gas** 16%
- **Renewables** 9%
- **Oil** 3%

Very little oil is used for generating electricity.
Environmental Benefits?

- Energy supply
 - Energy independence
 - Reduced use of coal

- Air quality improvement
 - SO2 and NOx
 - CO2

Projected Net Growth in U.S. Electricity Generation: 2005 - 2020

Wind generation is projected to account for up to 19% of net growth in total generation. Sources other than wind will be required for the other 81%.

Projected electricity generation capacity for the U.S. by different generator types. Actual generation depends on amount of capacity, as indicated by the thickness of the section of the graph, and on annual capacity factor (effective yield) of each generation source. Due to wind intermittency, the annual capacity factor for wind energy projects is only about 30% - much less than for other utility-scale electricity generator types. (The graphic is from the National Renewable Energy Laboratory, DOE: http://www.nrel.gov/analysis/winds/qualitative.html) NOTE: 1,000 MW = 1 GW & 1,000 kW = 1 MW
Environmental Benefits?

- Energy supply
 - Energy independence
 - Reduced use of coal
- Air quality improvement
 - SO2 and NOx
 - CO2

Projected U.S. CO2 emissions from electricity generation units and potential offset provided by projected wind energy development

Fossil-fuel-fired generating units account for less than 40% of U.S. CO2 emissions. The potential offset provided by onshore wind energy development is thus less than 2.25%.

Environmental Benefits?

- Energy supply
 - Energy independence
 - Reduced use of coal
- Air quality improvement
 - SO2 and NOx
 - CO2

In the context of a cap and trade program there is limited opportunity to achieve emission reductions through wind energy development.

Wind energy potential in the United States. Areas with Wind Power Class 3 and above are considered economical to develop. Most of the inland wind potential is in the Midwest. Areas with high wind potential on the mountain ridges are narrow lines that don’t show up well at this map scale.

(From National Renewable Energy Laboratory, DOE: http://www.nrel.gov/analysis/winds)
States regulated by EPA under the Clean Air Interstate Rule

The final Clean Air Interstate Rule (CAIR) covers 28 eastern states and DC. Air emissions in these states contribute to unhealthy levels of ground-level ozone, fine particles or both in downwind states.

http://www.epa.gov/interstateairquality/where.html
Projected Non-attainment Areas in 2010 & 2015 after reductions from Clean Air Interstate Rule (CAIR) and existing Clean Air Act (CAA) programs

Ozone & Fine Particle Nonattainment (Apr. 05)

CAIR and Other CAA Programs Will Help Bring Many Eastern Areas into Attainment - However, a number of areas are projected to not attain through 2010 and 2015

SOURCE:
http://cleanairinfo.com/modelingworkshop/pre sentations/PM2_5_Damberg.pdf

Projections concerning future levels of air pollution in specific geographic locations were estimated using the best scientific models available. They are estimations, however, and should be characterized as such in any description. Actual results may vary significantly if any of the factors that influence air quality differ from the assumed values used in the projections shown here.
Any reduction in SO2 and NOx emissions associated with development of wind energy will occur against a background of substantial emission reductions obtained through the Clean Air Act and other regulatory programs. Examination of U.S. emissions data for 1970–2003 indicates that emissions of SO2 from electrical generating units declined 37% while emissions of NOx from power plants declined by 9%.*

Current regulatory programs mandate either national or regional caps on emissions of SO2 and NOx from power plants, and additional reductions of both pollutants are scheduled even though demand for electricity is projected to increase (e.g., Clean Air Interstate Rule). However, any offset of emissions from those fossil-fueled power plants whose generation would be displaced by wind turbines’ output likely results in the affected power plant owners selling or trading to other power plants their “unused” pollution allowances (which are doled out by EPA under auspices of “Cap & Trade” programs of the Clean Air Act) – or they also could decide to burn cheaper but “dirtier” fuels (e.g., higher sulfur coal).** A ZERO-SUM GAME!

Environmental Concerns

• Direct wildlife mortality – esp. bats
• Indirect wildlife impacts – e.g., displacement and noise effects
• Habitat Loss and Fragmentation

Shell/NedPower Windplant
Mount Storm, WV
Sept. 29, 2008

Photos by Ed Arnett,
Bat Conservation International

See also: http://www.windaction.org/documents/18575
Up to 4,000 birds and bats were killed in collisions with 44 wind turbines in WV during 2003.

Photos of bats by Merlin Tuttle, Bat Conservation International.
Bat experts recently estimated that over 110,000 bats may be killed per year if less than 4,000 MW of industrial wind turbines are installed within the Mid-Atlantic Highlands Region.

Source: http://www.vawind.org/#Kunz
Projections of Cumulative Annual Bat Mortality Resulting From Various Future Wind Energy Development Scenarios In the Eastern United States

Estimated Annual Mortality

1 – East Coast States include New England, NY, PA, WV, MD, VA, TN & NC
2 – Mid-Atlantic Highlands include non-coastal portions of PA, WV, MD and VA
3 – estimate range from Kunz et al. 2007; see: www.vawind.org/#Kunz

Sources for MW estimates:
A - www.awea.org/projects
B - www.pjm.com/planning/project-queues/queue-gen-active.jsp
C - see generator interconnection queues for PJM, NY-ISO and ISO-NE (checked Oct. 23, 2008)
D – http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf (extrapolated from Fig. 1-8)
Future projection from the July 2008 report entitled “20% Wind Energy by 2030” by USDOE NREL & AWEA
The July 2008 report from USDOE NREL & AWEA entitled “20% Wind Energy by 2030” projects that U.S. wind power capacity needs “to grow from 11.6 GW in 2006 to more than 300 GW over the next 23 years.”

“The 20% Wind Scenario would require an installation rate of 16 GW per year after 2018”

2006 – 2,454 MW of wind turbines installed within USA
2007 – 5,249 MW of wind turbines installed
2008 – projection of 7,500 MW of wind turbines installed

Projected cumulative installed wind power capacity to supply 20% of the US electricity demand by 2030

Future projection from the July 2008 report entitled “20% Wind Energy by 2030” by USDOE NREL & AWEA

Source: Fig. 1-7 in: http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf
Forest Fragmentation

3-5 acres cleared and 15-20 acres of interior forest lost per turbine*

* http://www.kutztown.edu/acad/geography/wildlife&windconf/Speaker_Presentations/Boone_GIS.pdf
Projections of Cumulative Forest Habitat Loss Resulting From Various Future Wind Energy Development Scenarios In the Eastern United States

Estimated Number of Square Miles of Forest Loss

1 – East Coast States include New England, NY, PA, WV, MD, VA, TN & NC

2 – Mid-Atlantic Highlands include non-coastal portions of PA, WV, MD and VA

3 – estimate range based on GIS analysis of existing wind projects (total forest loss / # turbines) - see: http://www.kutztown.edu/acad/geography/wildlife&windconf/Speaker_Presentations/Boone_GIS.pdf

Square mile = 640 acres

Sources for # turbine estimates: A - www.awea.org/projects B - www.pjm.com/planning/project-queues/queue-gen-active.jsp
C - see generator interconnection queues for PJM, NY-ISO and ISO-NE (checked Oct. 23, 2008)
D - http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf (extrapolated from Fig. 1-8). All scenarios assume turbines = 2MW
Projections of Cumulative Forest “Interior” Habitat Loss Resulting From Various Future Wind Energy Development Scenarios In the Eastern United States

Forest “interior” occurs >100 m from edge of non-forest area or a linear break of canopy that is >30 feet in width.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Estimated Number of Square Miles of Forest Interior Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing & under construction - East Coast</td>
<td>21</td>
</tr>
<tr>
<td>Existing + Under review now - Mid-Atl.</td>
<td>69</td>
</tr>
<tr>
<td>Highlands (4,400 turbines)</td>
<td>137</td>
</tr>
<tr>
<td>Existing + Under review now - East Coast</td>
<td>172</td>
</tr>
<tr>
<td>States (11,000 turbines)</td>
<td>344</td>
</tr>
<tr>
<td>Projected via 20% by 2030 report - East</td>
<td>547</td>
</tr>
<tr>
<td>Coast states on land (17,500 turbines)</td>
<td></td>
</tr>
</tbody>
</table>

Square mile = 640 acres

1 – East Coast States include New England, NY, PA, WV, MD, VA, TN & NC
2 – Mid-Atlantic Highlands include non-coastal portions of PA, WV, MD and VA
3 – estimate range based on GIS analysis of existing wind projects (total forest loss / # turbines) - see: http://www.kutztown.edu/acad/geography/wildlife&windconf/Speaker_Presentations/Boone_GIS.pdf

Sources for # turbine estimates:
A - www.awea.org/projects
B - www.pjm.com/planning/project-queues/queue-gen-active.jsp
C - see generator interconnection queues for PJM, NY-ISO and ISO-NE (checked Oct. 23, 2008)
D - http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf (extrapolated from Fig. 1-8).

All scenarios assume turbines = 2MW.
The behavioral response of the Greater Prairie-chicken is similar to that of the Lesser Prairie-chicken, and it is predicted that nesting and brood-rearing hens of both species will avoid large wind turbines (1.5 MW models; 350 feet tall) by at least a one-mile radius (Robel et al., 2004). In its Briefing Paper regarding prairie grouse leks and wind turbines, the U.S. Fish and Wildlife Service recommends a five-mile buffer between occupied prairie grouse leks and wind power facilities (Manville, 2004).

Summary

... wind energy development on central Appalachian ridges carries great risk of environmental harm and very little potential for benefits.

1. The wind energy capacity of the central Appalachian region is substantially less than in other regions of the U.S.

2. The areas with sufficient wind for commercial projects are the ecologically fragile areas that represent our remnant wild landscape.

3. Wind energy development in the region cannot make a significant contribution to solving our energy and environmental problems.

4. Promotion of wind energy development in the region hinders our ability to achieve real solutions for real problems.
Offshore wind areas in Mid-Atlantic Region have far greater development potential than uplands.
Golden Eagle in Highland County, Virginia