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Irregularities in power output are characteristic of intermittent energy, sources such as wind
energy, affecting both the power quality and planning of the energy system. In this work
the effects of energy storage to reduce wind power fluctuations are investigated. Integra-
tion of the energy storage with wind power is modelled using a filter approach in which a
time constant corresponds to the energy storage capacity. The analyses show that already
a relatively small energy storage capacity of 3 kWh (storage) per MW wind would reduce
the short-term power fluctuations of an individual wind turbine by 10%. Smoothing out the
power fluctuation of the wind turbine on a yearly level would necessitate large storage, e.g.
a 10% reduction requires 2–3 MWh per MW wind. Copyright © 2005 John Wiley & Sons, Ltd.
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Introduction
Sporadic fluctuation of power output is characteristic of intermittent energy sources such as wind energy. This
may in turn impose special requirements on the surrounding power system and may even restrict the use of
wind energy in certain conditions. Thus wind power systems challenge equally the power quality, energy plan-
ning and power flow controls in the local grid.

Wind data consist basically of two overlapping effects, namely macro-meteorological and micro-
meteorological fluctuations.1 The macro-meteorological fluctuations indicate the movements of large-scale
weather patterns such as the day and night cycle and the movement of depressions and anticyclones. The micro-
meteorological fluctuations originate from the atmospheric turbulence with typical time scales of 1–600 s.
Similar fluctuation patterns appear in wind power systems, although modified by the physical and electrical
characteristics of the wind turbine itself.2

The fluctuations in wind power influence both power quality and energy planning. The power quality prob-
lems that cannot be handled with power electronics mainly arise from the local voltage variation caused by
the imbalance of the power generation and the local power demand. This can be problematic in weak networks,
where an expansion in local wind power capacity may result in undesired voltage levels.3,4 In an extreme sit-
uation a whole wind power system may need to be disconnected from the grid.5

The aim of this work is to assess how energy storage could smooth out fluctuations in wind power genera-
tion on a time scale from 1 s to hours and a few days. We focus on small or intermediate energy storage capac-
ities which may improve the power quality of an individual wind power turbine. The concept may be expanded
to large wind power systems when the corresponding system data are analysed. The effects due to fluctuation
for less than 1 s, causing e.g. flickering,6 are excluded here.
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In the article a methodology is presented to describe the smoothing out of wind turbine power variations
when combined with energy storage. The system output is modelled by introducing to the output data a time
constant corresponding to energy storage capacity. This method is applied to two sets of data with a time res-
olution of 1 s and 1 h respectively. The method allows us to directly relate the size of the energy storage with
wind power variation on a short- and medium-term time scale.

Previous work on wind power and storage includes mainly economic issues and autonomous wind–storage
systems. Integration of wind power into the power system has been reported e.g. by Bindner and Lundsager,7

Tande8 and Koch et al.9 Economic benefits of combining grid-connected wind power with energy storage on
open electricity markets have been reported by Bathurst and Strbac10 and Korpaas et al.11 Using storage for
compensating reactive power in a wind farm has been discussed by Muljadi et al.12 Bindner3 reports storage
among competitive alternatives to increase wind power in weak grids. Electric storage has also been applied
to non-grid wind–diesel or autonomous wind–storage systems.13,14 The compensation of fluctuations in a
wind–diesel system using fuzzy logic was reported by Leclercq et al.15 The kind of analysis presented in this
study has not been reported previously.

Defining the Characteristics of Wind Power Fluctuation
A statistical approach is first applied to characterize the different wind power conditions and their specific
behaviour, as the effect of energy storage will depend much on the prevailing wind speed conditions. The time
scale and relative intensity of the wind speed or power fluctuation are of primary importance here.

Based on the work by Van Der Hoven,16 Rohatgi and Nelson1 divide the fluctuations of horizontal wind
speed into two distinct regions, namely macro-meteorological and micro-meteorological. The macro-
meteorological region results from the large-scale movement of the air masses due to depressions and anticy-
clones, while the micro-meteorological fluctuations originate from the atmospheric turbulence. As Figure 1
shows, the typical power density peaks in the macro region are found at 12 and 100 h, while the peak in the
micro region is at about 1 min only.1

Classification of wind data is typically done by analysing the wind turbulence intensity and integral time
and length scale from 10 min samples.17 The normalized power level and standard deviation together with the
integral time scale are used to characterize the statistical details of the power data sets. The integral time scale
describes the average time over which the fluctuations in the data are correlated with each other,1 while the
normalized standard deviation is applied to identify the level of smoothing in the power series.

The integral time scale of the wind speed fluctuation is calculated with the autocorrelation of the wind data.17

In a similar way the autocorrelation is used to define the integral time scale of the wind power fluctuation as
shown below. First we define the sample autocorrelation function r for a given lag m as18,19

(1)

where , n being the number of sample data points. Next the power integral time scale (PITS) is
defined as

(2)

Here Dt is the sampling interval for the data set and mr=0 is the point where rm for the first time equals zero or
becomes negative. The normalized standard deviation (STD) of the wind turbine power is defined as
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where Pnom is the nominal power of the wind turbine. Correspondingly the normalized mean power level (PFR)
is

(4)

Two different sets of wind power data are used here. The first data set contains measured wind turbine power
output data with Dt = 1 s. The blade-passing effects and other very-short-term phenomena typically handled
with power electronics do not appear in the data series, but it includes the effects originating from the micro-
meteorological fluctuations.20

The Dt = 1 s data PITS analysis is done with fixed and successive 10 min (600 point) data windows, giving
altogether 20–44 data periods whose results will be averaged over the whole sample. This assures the com-
parability of different samples and puts weight on their short-term patterns.

The second data set has Dt = 1 h and comprises two different types of data. The first subset comprises mea-
sured wind turbine power data that have been averaged over 1 h intervals. The second part contains simulated
wind turbine output that has been calculated using height-corrected hourly wind data together with wind turbine
power curves. The samples cover a period of 1 year, except for the two smaller turbines where the sample
period is 202 days. Only limited statistical analysis is done to the hourly data (Dt = 1 h), as the averaging
process has eliminated all short- and intermediate-term fluctuations.

Storage Analysis
In our approach the fluctuations in wind power output are described as undesirable short-term noise in the
signal output. The effect of energy storage is modelled by introducing a filtering time constant to the wind

PFR
nom

=
p

P

Figure 1. Spectral power density of horizontal wind speed showing the macro-meteorological and micro-meteorological
fluctuations (adopted from Reference 1)
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power data. This is done with a discrete lowpass filter that is typically used to remove high-frequency noise
from a signal.21

The lowpass filter suggests an increase or a decrease to the level of wind power output, which is compara-
ble to discharging or charging of the storage with corresponding power. In the analysis it is assumed that 
the energy storage has no efficiency losses and that it gives an immediate response to the filtering 
suggestions.

The suggested method allows the influence of energy storage to be studied through different time constants
corresponding to energy storage capacity.

The first-order passive lowpass filter is mathematically described as21,22

(5)

where t is the filtering time constant corresponding to energy storage capacity, Y is the filter output function
corresponding to the wind turbine output together with the storage unit, Y¢ is the derivative of Y and X is the
filter input function that corresponds to the wind turbine output without energy storage.

When discrete data with a time step Dt are used interconnected with a lowpass filter and the derivative of
Y is expanded into discrete form, equation (5) can be written for time step k as

(6)

Solving for Yk gives

(7)

Defining a constant a = t/(t + Dt), equation (7) can be rewritten as

(8)

Now equation (8) has the form of an exponentially weighted moving average (EWMA) filter.22 The subscript
k corresponds to time, i.e. tk = t0 + kDt, where Dt is the time step and t0 is the starting point of the analysis.

The improvement in the quality of the filtered power output data has been evaluated through the changes in
the wind power fluctuation characteristics. The PITS value is periodically re-evaluated and averaged, while
the STD is recalculated for the whole sample.

With an EWMA filter the response of the energy storage is

(9)

where Pst,k is the power taken from the storage unit. Inserting equation (8) into equation (9), we obtain

(10)

Solving equation (9) for Yk-1 and inserting it into equation (10) yields

(11)

At start-up (k = 1) the initial value Pst,0 + X0 needs to be defined. The initial value is found here by using peri-
odic boundary conditions iteratively so that the storage capacity is minimized.

The energy state of the storage, representing the energy content in it, is defined in discrete form as

(12)

The energy storage capacity used for damping the fluctuations is then defined as

(13)

where n is the total number of time points in the data sample.
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Figure 2 shows how the time constant affects a wind power data sample in practice. The t values in the
figure correspond to energy storages with different capacities.

Input Data Used in the Analysis
The analysis in this work is based on measured data of wind speed and wind turbine power output at differ-
ent locations around Europe, as presented in Table I. The table includes the site and sample names, location
and data-sampling interval. Both synchronous and asynchronous turbines are included, as well as one older
wind turbine model with passive stalling.

The data-sampling intervals are 1 s and 1 h. As data with Dt = 1 s are difficult to obtain, only three differ-
ent sites in Finland could be used. The turbine data with hourly interval are available from three sites in Finland.
Three additional sites around Europe are simulated based on hourly weather data.23 The simulated data are
generated by applying the power curve24 and turbine tower height (65 m) of the actual turbine located at the
site Riutukari. The logarithmic wind profile is used to estimate the wind speed at the tower height.17

The Dt = 1 s data are used to analyse the effect of storage on short-term fluctuations that originate from the
micro-meteorological-scale weather phenomena combined with the turbine dynamics. The data samples in
Table II mainly correspond to power levels up to 80% of nominal power. These levels are considered more
interesting, as the relative fluctuations are large and effects from the active stalling are absent. The statistical
qualities of the sample data are shown in Table II.

The classification of the data samples with 1 s interval is presented in Figure 3. Class A includes low-power
data with high PITS, hence dominated by slow fluctuations with large amplitude. Class B includes low-power
data with low PITS, hence dominated by fast small-amplitude fluctuation. Classes C and D include likewise
the high-power data, class C having high PITS and slow fluctuation and class D having low PITS and fast
fluctuation.

Figure 2. Demonstration of the effects of increasing t (energy storage capacity) on the amplitude of the wind power
fluctuation for a real wind power case
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The hourly (Dt = 1 h) power data represent a 1 h power integral value of the turbine output or a simulated
power value from the weather data. All the short-term effects are smoothed out, leaving only the effects from
macro-meteorological phenomena. The statistical characteristics of the hourly data are shown in Table III.

Results of the Short-term Data Analysis
By using the EWMA filtering approach, it was possible to analyse how t influences the normalized power
standard deviation (STD) and the power integral time scale (PITS) of the data samples. Also the correspond-
ing storage capacity needed could be determined. With these results the reduction of STD can be directly related
to the storage capacity requirements. The STD in the short-term analysis corresponds to the standard devia-
tion of a 3–7 h long data sample.

The effects of the filtering of the Dt = 1 s data are shown in Figures 4–7. The reduction of the fluctuation
over all the samples is presented in Figures 4a–4c. For example, with t = 1 min the reduction of fluctuation
in classes A and C is 11%–24%, in class B 23%–30% and in class D over 40%.

The increase of the PITS against t is shown in Figures 5a–5c. As each of the PITS values is averaged from
the values of the 10 min data windows, they elucidate the typical time scales in those windows only. The rapid
increase of PITS values indicates that fluctuations in the 10 min range are effectively dampened. PITS values
saturate at about t = 5 min to a value of 75–90 s for samples A–C and 65–70 s for samples D. Going for higher
t would not be possible owing to the 10 min data window used.

The relation of t and the energy storage capacity is shown in Figures 6a–6c. The storage capacity is expressed
in units of kWh storage per MW of nominal wind turbine power (kWh/MW). The capacity equivalent to t =
1 min is 2·7–6·5 kWh/MW for classes A–C and (slightly higher) 6·1–8·5 kWh/MW for class D. For t = 10 min
we have 17–34 kWh/MW for classes A and B, 48 kWh/MW for class C and 28–40 kWh/MW for class D.

In Figure 7 the results from Figures 5 and 6 are combined to relate the wind power fluctuation and storage
capacity. It can be seen that with a storage capacity of 3 kWh per wind power MW the STD is reduced in all
cases by at least 10%. In the wind power classes B and D, 1 kWh/MW is adequate to provide 10% reduction
in the STD. Going beyond the 10% suppression, the storage capacity needed will increase rapidly, with large
differences between the power classes A–D.

Assuming an available energy storage capacity of 5 kWh per MW reduces the STD by 12% (class C),
14%–23% (class A), 23%–28% (class B) and 37%–51% (class D). The large spread stresses the importance
of good knowledge about local wind conditions to judge the usefulness of energy storage. When the wind con-
ditions are dominated by turbulence with high integral time constant, the fluctuations in the wind power output
are strong in the low-frequency region, which is the most capacity-intensive to compensate. From a practical

Table I. Wind turbine sites and types of data sets used as input in the analysis

Site Country Wind turbinea Location Sample name Sample interval Dt

Pori Finland 1000 AA 61°22¢N 21°18¢E Pori 1 s
Oulu Finland 1000 SA 65°02¢N 25°01¢E Oulu 1 s
Pyhätunturi Finland 220 AP 68°15¢N 23°22¢E Pyhä 1 s
Föglö Finland 600 SA 60°00¢N 20°19¢E Fögl 1 h
Vårdö Finland 500 SA 60°14¢N 20°24¢E Vård 1 h
Riutukari Finland 1300 AA 65°00¢N 25°12¢E Riut 1 h
Trapani Italy 1300 AAS 37°55¢N 12°30¢E Trap 1 h
Lerwick Great Britain 1300 AAS 60°08¢N 01°11¢W Lerw 1 h
Copenhagen Denmark 1300 AAS 55°48¢N 12°30¢E Cope 1 h
Paris France 1300 AAS 48°42¢N 06°12¢E Pari 1 h

a AA = asyncronous turbine, active stalling; SA = syncronous turbine, active stalling; AP = asyncronous turbine, passive
stalling; AAS = asyncronous turbine, active stalling, simulated.
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Figure 3. Classification of Dt = 1 s wind power data used in the analysis according to mean power and power integral
time scale

point of view a modern flywheel energy storage module could provide up to 25 kWh energy storage capac-
ity,25 suggesting that in most conditions a single storage unit could reduce the short-term STD of a 1 MW wind
turbine by 50% (not shown in Figure 7). Alternatively, such a unit could provide 10% reduction in STD for a
10–50 MW wind power park, depending on the wind power class.

Results of the Long-term Data Analysis
The hourly data sets were studied to investigate how the macro-meteorological phenomena in wind speed could
be compensated through storage. As Dt and t are now large and smooth out the micro-meteorological effects
and since the long data sets include many kinds of wind behaviour, the previous classification of Dt = 1 s wind
power data (classes A–D) is not feasible. The data sets contain a 1 year sample (202 days for Fögl and Vård).

The reduction of the deviation in the hourly data through the increased time constant is shown in Figure 8.
The upper part shows the absolute reduction of STD, while the lower part shows the reduction of STD in per-

Table III. Statistical characteristics of the data sets with Dt = 1h

Characteristica Pari Cope Trap Lerv Fögl Vård Riut

Nominal power (kW) 1300 1300 1300 1300 600 500 1300
Mean power (kW) 232 370 343 469 165 94·1 338
Power SD (kW) 314 417 435 465 168 107 366
Normalized mean power 0·179 0·285 0·264 0·361 0·274 0·188 0·260
Normalized power SD 1·35 1·13 1·27 0·99 1·02 1·13 1·08

a SD = standard deviation.
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Figure 4a. Short-term influence of time constant t on the relative standard deviation of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation class A
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Figure 4b. Short-term influence of time constant t on the relative standard deviation of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation classes B and C
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Figure 4c. Short-term influence of time constant t on the relative standard deviation of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation class D
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Figure 5a. Short-term influence of time constant t on the power integral time scale of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation class A

Figure 5b. Short-term influence of time constant t on the r power integral time scale of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation classes B and C



Energy Storage 433

Copyright © 2005 John Wiley & Sons, Ltd. Wind Energ. 2005; 8:421–441

Figure 5c. Short-term influence of time constant t on the power integral time scale of the wind turbine power output.
Turbine data sets with Dt = 1 s and fluctuation class D

centages. With t = 12 h a 23%–27% reduction was achieved in the yearly fluctuation for most of the samples.
With t as high as 24 h a roughly 34%–38% reduction is achieved. The Trapani sample differs from the others,
most likely owing to a difference in local weather fluctuation cycles. Energy storage with t = 12–24 h 
corresponds for example to pumped hydro storage, typically applied in energy-planning schemes.

The comparison of energy storage capacity and t is shown in Figure 9. With t up to about 12 h the energy
storage capacity values are very similar for all the samples, but the differences become pronounced with larger
t.

In Figure 10 the results from Figures 8 and 9 are combined to present the storage capacity as a function of
long-term wind power fluctuation. To achieve a 10% reduction in the yearly fluctuation, a 2–3 MWh storage
capacity per MW of wind power is required. Similarly, a 30% reduction can be achieved with a capacity of
10–15 MWh per MW.

The above energy storage capacities indicate that a large storage system set-up, such as an array of flywheel
modules,25 is needed when the local network cannot accommodate the voltage changes due to the long-term
power fluctuations of a wind turbine. Alternatively, there are multiple ways to reduce the voltage changes
induced by embedded generation, as discussed by Masters.4 The optimal combination of wind power, energy
storage and other installations, e.g. reactive power compensators or voltage controllers, becomes a site-
connected economic issue which is beyond the scope of this paper.

Conclusions
Integration of energy storage into an individual wind turbine and the corresponding effects have been mod-
elled using a filter approach in which a time constant (t) is applied to describe the energy storage capacity.
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Figure 6a. Short-term influence of time constant t on the relative capacity need of the wind turbine storage unit.
Turbine data sets with Dt = 1 s and fluctuation class A



Energy Storage 435

Copyright © 2005 John Wiley & Sons, Ltd. Wind Energ. 2005; 8:421–441

Figure 6b. Short-term influence of time constant t on the relative capacity need of the wind turbine storage unit.
Turbine data sets with Dt = 1 s and fluctuation classes B and C
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Figure 6c. Short-term influence of time constant t on the relative capacity need of the wind turbine storage unit.
Turbine data sets with Dt = 1 s and fluctuation class D
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Figure 7. Relation of short-term energy storage capacity and relative standard deviation of the wind turbine power
output. Turbine data sets with Dt = 1 s and power fluctuation classes A–D

The relationship between the standard deviation of the wind turbine power output and the corresponding energy
storage capacity was solved. The effects of storage were studied for European conditions with time steps Dt =
1 s and Dt = 1 h to identify the effects from both micro-meteorological and macro-meteorological wind fluc-
tuations. The data sets comprised measured power data from six Finnish wind turbines and simulated power
data based on European mean weather data from four different cites.

The micro-scale analyses showed that applying already relatively small time constants and hence small
energy storage capacities would reduce the short-term fluctuations of wind power. A storage capacity of 3 kWh
per MW of wind power shows at least a 10% reduction in the short-term deviation (4–7 h) of the power data,
while in some wind conditions only 1 kWh per MW is needed to obtain the same effect. With 5 kWh capac-
ity per MW the reduction of standard deviation varies from 12% to 50% between the sites, showing the impor-
tance of understanding the local wind conditions for storage sizing and design. By introducing a storage
capacity of 25 kWh per MW, still within the limits of a modern flywheel energy storage unit, the standard devi-
ation of wind power would be reduced by 50% in most cases.

The macro-scale analyses showed that large storage capacities would be needed as expected to significantly
smooth out the yearly fluctuation of the power output from an individual wind turbine. Reducing the yearly
deviation by 10% would require an energy storage capacity of 2–3 MWh per MW wind power, while a 30%
reduction would require 10–15 MWh capacity per MW. Such energy storage capacity requirements can easily
become economically unfeasible. When necessary, the fluctuations could be levelled out with a storage system,
possibly in combination with a system such as a reactive power compensator or a voltage controller, to reduce
the system sensitivity to wind power fluctuations.

Our further work on this energy storage will include more detailed numerical energy system modelling of
wind–storage schemes using the results from the present study as input. In this context the control schemes
for storage and their effects will be quantified in more detail for practical cases.
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Figure 8. Influence of long-term time constant t on the macro-scale standard deviation of the wind turbine power
output. Turbine data sets with Dt = 1 h
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Figure 9. Influence of time constant t on the relative energy storage capacity per MW wind turbine capacity. Turbine
data sets with Dt = 1 h

Figure 10. Relation of long-term energy storage capacity and relative standard deviation of the wind turbine power
output. Turbine data sets with Dt = 1 h
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Appendix: Nomenclature
rm autocorrelation function with lag m
pi power data sample value with index i
p̄ average power of a data sample
PITS power integral time scale
STD normalized standard deviation
PFR normalized mean power level
Dt sampling interval for a data sample
t filtering time constant corresponding to energy storage capacity and control strategy
Y filter output corresponding to wind turbine output together with response from storage unit
Y¢ time derivative of Y
X filter input corresponding to wind turbine output without energy storage
k step number for discrete analysis
n number of data points in a data sample
Dt time step applied in discrete data
a constant used in the exponentially weighted moving average filter
t0 initial time for an analysis
tk corresponding time for step k
Pst,k power taken from an energy storage at step k
Ek energy state of an energy storage at step k
Q energy storage capacity used for damping fluctuations in a data sample
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