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Mitigation of anthropogenic climate change involves deployments of renew-

able energy worldwide, including wind farms, which can pose a significant

collision risk to volant animals. Most studies into the collision risk between

species and wind turbines, however, have taken place in industrialized

countries. Potential effects for many locations and species therefore remain

unclear. To redress this gap, we conducted a systematic literature review

of recorded collisions between birds and bats and wind turbines within

developed countries. We related collision rate to species-level traits and tur-

bine characteristics to quantify the potential vulnerability of 9538 bird and

888 bat species globally. Avian collision rate was affected by migratory strat-

egy, dispersal distance and habitat associations, and bat collision rates were

influenced by dispersal distance. For birds and bats, larger turbine capacity

(megawatts) increased collision rates; however, deploying a smaller number

of large turbines with greater energy output reduced total collision risk per

unit energy output, although bat mortality increased again with the largest

turbines. Areas with high concentrations of vulnerable species were also

identified, including migration corridors. Our results can therefore guide

wind farm design and location to reduce the risk of large-scale animal mor-

tality. This is the first quantitative global assessment of the relative collision

vulnerability of species groups with wind turbines, providing valuable gui-

dance for minimizing potentially serious negative impacts on biodiversity.
1. Introduction
In response to projected impacts of climate change on the environment, human

society and health [1], political consensus at the 21st Conference of Parties of

the United Nations Framework Convention on Climate Change (UNFCCC)

led to agreement to hold the increase in global temperatures to below 28C,
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above pre-industrial levels, and pursue efforts to limit the

increase to 1.58C [2]. Achieving this ambition depends on

global emissions peaking around 2020, with negative emissions

in the second half of this century [3], requiring large-scale and

rapid deployment of renewable energy technologies. Wind

farms are the most well-developed, cheapest, widely available

and feasible renewable energy technologies for electricity gen-

eration [4], and are likely to form an important component of

renewable electricity generation strategies.

Wind farms can have negative impacts upon biodiversity

[5], including direct collision mortality, displacement from

feeding or nesting areas, barrier effects to movement and habi-

tat degradation or loss [6]. For volant species such as birds and

bats, the risk of collision is a serious concern [5], and large num-

bers of birds and bats have been shown to be killed by turbines

[5,7,8], particularly at aggregation sites, such as migratory bot-

tlenecks or near breeding colonies [9]. It has been suggested

anecdotally that some species groups, such as migratory bats,

raptors and seabirds, may be particularly impacted [9,10],

which may at least be partly linked to visual acuity [11].

Collision mortality with wind turbines may reduce popu-

lations, particularly of long-lived, slow-reproducing species

[12,13] and wide-ranging or migratory species [12,14]. Conse-

quently, there is an urgent need to quantify species’

vulnerability across as wide a range of species and geography

as possible. Further, a recent review highlighted most studies

to date have focused on the developed world [5]. The need to

identify species’ vulnerability, however, is crucial for

countries in the developing world, where wind farms may

be rapidly deployed to achieve climate change mitigation

targets. This paper describes analyses designed to improve

our understanding of the factors influencing the collision vul-

nerability of species to onshore wind turbines, and to inform

future wind farm location and design in areas and for species

for which this has been little studied. We model the extent to

which ecological, morphological and life-history traits are

likely to influence encounter rates with turbines, accounting

for variation in parameters that differ between studies. We

also consider other factors, such as turbine size, that might

affect the likelihood of collision [15,16], to examine the

extent which wind farm design may reduce collision rates.
2. Material and methods
(a) Literature review and data structure
We conducted meta-analyses using Web of Science, Google

Scholarq and Googleq to search for peer- and non-peer-reviewed

literature. Given the known differences in terminology for ‘wind

farms’, we used the following search terms for birds: (bird* OR

avian) AND wind AND (farm* OR energy OR windfarm* OR

industry* OR wind-farm* OR park* OR development* OR facilit*).

For bats, we repeated the search, replacing ‘bird’ and ‘avian’ terms

with ‘bat’. References reporting collision mortality were identified.

Population-level impacts such as mortality rates were rarely avail-

able; instead most studies presented the numbers of collisions per

species per turbine or per megawatt (MW). The following data

were extracted: study reference, wind farm name, geographical

location, species’ identity, number of deaths, study duration,

wind farm and turbine quantity, turbine size and study quality

information (see below). In total, 133 studies for birds and 101

for bats reported collision rates. Of these, 88 bird and 87 bat studies

were suitable for inclusion, and contained information from 93 and

134 onshore wind farm sites (electronic supplementary material,
appendix A1, figure S1), respectively. Dominant land cover

within a 5 km buffer of the centre point coordinate of wind

farms was identified from GLC2000 [17]. References and further

information on traits are given in electronic supplementary

material, file S1 and data collection files S2.

(b) Study quality and site-specific information
The detectability of collision victims is affected by many factors,

including frequency of mortality surveys, scavenger removal,

observer skill and variation in encounter probability (detecta-

bility) between species [18–20], ground and habitat types and

ecosystems. Studies varied in the extent to which they corrected

for these factors, and did not provide sufficient information to

produce a standardized collision rate metric [21,22]. Instead,

we categorized studies based on quality as follows: (1) ‘very

low’: no corrections; (2) ‘low’: correction for aspects of scavenger

removal and observer skill, but detectability constant across

species; (3) ‘medium’: as (2) but with multiple corrections for

detectability for species’ groupings, e.g. ‘small bird’ or ‘large

bird’; (4) ‘high’: species-specific corrections for main sources of

error (electronic supplementary material, appendix A2). For

bats, no distinctions were made for species groups, therefore a

three-level variable was used, combining low and medium cat-

egories. Corrections for bat scavenger removal were sometimes

based on proxy bird species, which might introduce bias.

The search area around turbines (hereafter, ‘buffer area’) may

influence discovery of collision victims and so was included as

a covariate (birds: mean+1 s.d., 2.1+1.4 ha, range 0.1–8.6 ha;

bats: 1.2+1.1 ha, 0.1–8.1 ha). We included ‘year’ (birds: 1.8+1.6

years, 1–10 years; bats: 1.4+0.9 years, 1–5 years), and ‘number

of days’ (birds: 281.7+106.4 days, bats: 238.7+110.1 days, range

42–365 days) as covariates to control for study duration. A binary

factor separated peer- and non-peer-reviewed literature. As studies

varied in the number of wind farms monitored, this was added as

an additional covariate. Turbine size was included as a linear

predictor, given its potential impact on mortality rate [12], here

assessed as turbine MW output [9] (birds: 1.3+0.7 MW,

0.2–2.5 MW; bats: 1.6+0.6 MW, 0.5–3.0 MW).

(c) Species’ traits
Traits for bird species were taken from the Birdlife International

World Biodiversity Database [23] except wing morphology,

which was measured directly from museum skins [24] (electronic

supplementary material, appendix A3). Flightless species were

excluded. Habitat, foraging strata and diet were specified using

binary factors for each factor level. Migratory status and breeding

dispersal distance, body size, clutch size, generation length

and Kipp’s distance (a measure of wing morphology related to

manoeuvrability [25]) were also obtained.

To account for species potentially present, but not recorded in

collision, we used spatial distribution polygons based on entire

breeding ranges for birds [23] and bats [26] to generate species

lists of ‘pseudo-absences’. Although this approach may produce

omission errors due to coarse data resolution [27], it allowed poten-

tial species’ presences to be modelled. The frequency of collision

may depend on local abundance, but such information was incon-

sistently reported. Therefore, we included global population size as

a proxy, which is implicitly related to gross variation in density.

Bat trait data were extracted from the PanTHERIA database

[28] but consideration of all traits simultaneously was not poss-

ible as data were available for subsets of species per trait.

We therefore tested (i) population group size [28]; (ii) forearm

length; (iii) body mass; (iv) litter size; (v) age of sexual maturity

and (vi) gestation length. Body mass and forearm length were

correlated (R ¼ 0.92), so forearm length was excluded. As 96%

of species were insectivorous [29], diet was not included. Disper-

sal distance (vii), use of tree roost sites (viii) and hibernation

http://rspb.royalsocietypublishing.org/
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behaviour (ix) were obtained through field guides (e.g. [30]) and

data portals [26,31,32]. For bats, current knowledge gaps and ter-

minology differences between studies prevented migration from

being separated from dispersal [32]. Maximum dispersal distance

was defined as ‘sedentary’ less than 10 km, ‘regional’ 10–100 km

and ‘long-distance’ 100þ km, the last probably equating to long-

distance migration [32]. Binary variables were specified for tree

roost site and hibernation. Traits 1, 5 and 6 were only available

for a smaller proportion of species (n ¼ 36), and were not signifi-

cant ( p . 0.05) when considered alongside the remaining traits.

Therefore, we present models for traits 3, 4 and 7–9 for 67 species

(see electronic supplementary material, appendices A3–A5).

(d) Phylogeny
To account for potential phylogenetic non-independence of data,

we used bootstrapped estimates of phylogenetic relationships

from the BirdTree database [33]. We generated 1000 random

trees, reduced further into a single minimum consensus tree

using a Python algorithm, taking a minimum of 50% support

for branching events [34]. Seven different methods for generating

trees were available for birds [33], providing seven alternative

models. For bats, we used a phylogenetic tree within the R

package ‘ape’ [35]. This tree had no bootstrapped estimates avail-

able, but species with available trait data were well represented

(greater than 95%).

(e) Statistical analysis
Bayesian Markov chain Monte Carlo (MCMC) generalized linear

mixed models were used to model the variation in collision rates,

using the R package MCMCglmm [36,37]. Models were specified

using a zero-adjusted Poisson error structure and a response of

collisions per turbine, including the logarithm of the number of

turbines surveyed as an offset; an R script for birds is provided

in electronic supplementary data collection, files S2. Fixed effects

were specified for species’ traits, study quality and site-specific

information (electronic supplementary material, table S1). To

assess the effect of inserting pseudo-absences, we repeated our

analysis based on recorded collisions, which produced similar

results (electronic supplementary material, appendix A5). We

therefore present results for models including pseudo-absences.

Phylogenetic signals were included by specifying the ‘tip label’

of species names from the minimum consensus tree as a

random effect [38], alongside a matrix inversely proportional to

the covariance structure of ‘tip label’ [37]. Phylogenetic models

were better fitting than those excluding phylogeny in all cases

(dDIC , 22.0). Study ID was included as a random effect to

account for repeated measurements of collisions per species

and study. Uninformative priors were specified except for

log(turbine) included as an informative prior to represent an

offset. We specified 105 000 Monte Carlo iterations with a

burn-in of 5000 and thinning of 100, to leave 1000 samples

from the posterior distributions. The proportion of variance

explained by fixed and random effects was examined [39] to

generate conditional (fixed plus random effects) and marginal

(fixed effects only) R2 values. Significance of fixed effects was

determined by whether 95% lower and upper credible intervals

(LCL, UCL) drawn from the posterior distribution overlapped

zero. For birds, model-averaged coefficients were computed

across all seven phylogenetic models with equal weighting.

For birds, predicted numbers of collisions/turbine/year were

generated from full models for 9568 species worldwide based on

trait relationships. Predictions were generated marginal to the

random effect of study ID, and were made at highest data quality

level for a 365-d duration, equating to rates of collision per

annum. Estimates for each species were treated as a final collision

vulnerability index. For bats, full trait data were available for the

67 species modelled. To maximize the global generality of our
predictions, we based predictions on phylogenetic correlation

only (for 888 species) from a model including only study and

site fixed effects (no-traits model). All modelling was conducted

in R v. 3.3.1 [40]. Full predictions are given in electronic

supplementary material, files S3 and S4.

For an independent check of correspondence, predicted vul-

nerability values were compared with a previous expert

assessment of species’ vulnerability to the threat of ‘renewable

energy’ in the IUCN Red List (Threats Classification Scheme v.

3.2 [26]). Modelled predictions were summarized in 5% percentiles,

and presented for those threatened species identified in the IUCN

Red List. To assess whether threatened species may be more at risk

of collisions than other species, we used a generalized linear model

to test whether collision rates varied by Red List category (Least

Concern, Near Threatened and ‘Threatened’, i.e. Vulnerable,

Endangered or Critically Endangered) in interaction with taxon

(bird versus bat), weighted by the reciprocal of collision rate error.

( f ) Turbine capacity effects on bird and bat mortality
We generated predictions of mean collisions/turbine/year across

all species for increasing turbine capacity, for the range of turbine

sizes included in this review (0.1–2.5 MW). The number of tur-

bines required to meet a hypothetical 10 MW energy demand

were then multiplied by these estimates to investigate the mean

number of predicted deaths per year across species for birds

and bats with increasing turbine capacity.

(g) Spatial variation in vulnerability to wind energy
Spatial variation in the potential impact of turbines on collision rates

was mapped globally, based on the predicted occurrence of species

within a grid (resolution, 5 km � 5 km), derived from overlaps with

species range maps [23]. For birds and bats, the MCMC posterior

predictions for each species were extracted. The predicted collision

rates for each species that occurred in a 5 km cell (vi) were

summed across all species (v1þ v2 þ v3 . . . vij), up to the total

number j occuring in that cell. A mean cumulative value, with

95% credible intervals, was then generated and mapped as a ‘vul-

nerability’ surface for birds and bats. Spatial data processing was

undertaken in SAS v. 9.3 (SAS Institute Inc.) and ArcMap v. 9.3.
3. Results
(a) Data summary
A total of 362 bird and 31 bat species were recorded as col-

lision victims with 407 and 41 further bird and bat species

included as pseudo-absences. Data were obtained from 16

countries for birds and 12 countries for bats. The dataset

was spatially biased to North America (birds, 64.0%, bats

48.6%) and Europe (birds, 31.0%, bats 50.6%), although

South Africa, Japan, Australia and New Zealand were

represented (electronic supplementary material, appendix

A1, figure S1). In total, 36% of studies were in forests and

29% were in agricultural areas (e.g. artificial landscapes)

with fewer in shrub (9%) and grassland (14%) landscapes.

Agricultural land cover was over-represented in the review

compared with global land cover (17%), whereas shrub

(21%) and grassland (26%) were under-represented and

forest was sampled approximately in proportion (37%)

(electronic supplementary material, appendix A4).

(b) Study quality and site-specific variables
Studies that had not corrected for carcass detection probability

(birds ‘very low’; bats ‘low’) or the size of birds (low),

http://rspb.royalsocietypublishing.org/
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significantly underestimated the number of collisions compared

with studies that had made such corrections ( p , 0.001 in all

cases, figure 1; see also electronic supplementary material,

tables S3 and S4). By contrast, ‘high’ and ‘medium’ quality

levels were not significantly different from the average

(figure 1, p . 0.05). There was no residual variation explained

by peer-and non-peer-review studies, buffer area, number

of wind farms and study duration in days or years, after

accounting for overall study-level variation using random

effects ( p . 0.05). There was, however, a strong positive

correlation between turbine capacity (MW) and collisions

per turbine (figure 1, p , 0.01 in all models).
(c) Species’ traits
For birds, habitat association was an important predictor of col-

lision rates (figure 1a, electronic supplementary material,

tables S3 and S4). Species using artificial (such as farmland

and urban areas) and grassland habitats had significantly

higher collision rates than species not using these habitats

(p , 0.01 in all cases). Species using marine habitats had

significantly lower collision rates than species not using

marine environments, probably influenced by a paucity of

data for offshore wind farms. Species feeding on fruit and

nectar had lower collision rates than species with other diets.

Diet and foraging strata had smaller effects than habitat, with

http://rspb.royalsocietypublishing.org/


Table 1. Summary of MCMCglmm model fits, assessed using pseudo-R2 values, for birds (model-average across seven phylogenetic models, electronic
supplementary material, table S2) and bats.

taxa model type

marginal: fixed effects
conditional: random
ID 1 phylo conditional: random ID

mean
posterior mode
(95% CI) mean

posterior mode
(95% CI) mean

posterior mode
(95% CI)

birds traits model 0.46 0.45 (0.35 – 0.56) 0.85 0.85 (0.82 – 0.88) 0.66 0.65 (0.57 – 0.72)

bats traits model 0.30 0.30 (0.11 – 0.50) 0.84 0.83 (0.77 – 0.92) 0.58 0.64 (0.37 – 0.75)

bats no-traits model 0.19 0.08 (0.04 – 0.42) 0.88 0.87 (0.81 – 0.95) 0.39 0.39 (0.16 – 0.62)
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coefficients being mostly non-significant (figure 1a). Migrants

exhibited higher estimated collision rates than non-migrants

(figure 1). One model gave significant support to migratory

status (electronic supplementary material, appendix A5), and

the direction of the effect was consistent across all models,

but the mean effect size across models just overlapped zero.

Species with median dispersal rates of 25–49 km or

50–99 km had significantly higher estimated collision rates

from some models than those dispersing smallest (less than

25 km) or longest distances (greater than 100 km).

For bats, species dispersing furthest had significantly

greater collision rates than sedentary species (figure 1), but

roost site and hibernation were not significant predictors

(figure 1). When fitted without dispersal, however, tree-roosting

species had significantly higher collision rates than other

species (electronic supplementary material, appendix A5).

(d) Model fit
The marginal R2 explained by fixed effects was 0.46 for birds,

and for bats it was 0.30 for the trait-based model and 0.19 for

the no-traits model (table 1). For birds, the phylogenetic

models produced similar b-coefficients (figure 1, electronic

supplementary material, appendices A4 and A5, tables S3

and S4). Phylogeny explained a high proportion of variance

in all models (table 1). Effective sample sizes greater than

200 and diagnostic plots indicated that autocorrelation

within MCMC chains was appropriately accounted for.

(e) Model predictions
For birds, 936 species had collision rates of more than 0.046

collisions/turbine/yr (90% quartile), of which 174 species

were Accipitriformes (figure 2), 57% of species in that

order. Accipitriformes had the highest predicted collision

rates of any taxonomic order (0.073+0.064 s.d. collisions/

turbine/year, mean lower credible interval less than 0.001,

mean upper credible interval, 0.288). Mean predictions were

also high for Bucerotiformes, Ciconiformes and Charadrii-

formes, whereas Galbuliformes and Coraciiformes were

among the lowest, and waterbirds such as Anseriformes

and Galliformes and Passeriformes songbirds also had

smaller than average predictions (figure 2).

For bats, the most vulnerable families containing greater

than 10 species/family included Molossidae and Hipposider-

idae, while Rhinolophidae were among the least vulnerable

(figure 3). The largest family, Vespertilionidae, had high

collision rates (0.718+ 0.586 s.d., 294 species) and included
the five bat species most vulnerable to collision (electronic

supplementary material, appendix A6).

In total, 57 bird species (including 31 Accipitriformes)

were identified as threatened by ‘renewable energy’ [26], of

which 43 species (75%) were above the 75% percentile of

our collision predictions (electronic supplementary material,

table S6). All of the 31 Accipitriformes were above the 75%

percentile, and 26 (84%) were ranked above the 90% percen-

tile. After accounting for a significantly greater collision rate

for bats than birds (x2 ¼ 510.30, p , 0.001), there was no

residual variation explained by IUCN Red List category

(x2 ¼ 0.63, p ¼ 0.73), or among categories constituting the

broader ‘threatened’ category (Vulnerable, Endangered or

Critically Endangered) (x2 ¼ 0.19, p ¼ 0.91, electronic

supplementary material, appendix A7).

( f ) Relationships between turbine size and mortality
For birds and bats, larger turbines were associated with

increased collision rates (figure 1). A greater number of

small turbines, however, resulted in higher predicted

mortality rates (figure 4) than a smaller number of large

turbines per wind farm unit energy output. Using 1000-

0.01 MW turbines resulted in the largest estimated number

of bird and bat fatalities; thereafter the numbers decreased

exponentially up to approximately 1.2 MW, where the

relationship for birds contined to decline up to 2.5 MW

turbines (posterior means, LCL–UCL 0.8, 0.5–1.1). By con-

trast, the mortality for bats increased again from 14 (8–21)

bats with 1.2 MW turbines, to 24 (12–40) bats with 2.5 MW

turbines (figure 4).

(g) Spatial variation in vulnerability to wind energy
The greatest numbers of vulnerable bird species occurred

along coastal and migratory pathways in the eastern and

southwestern USA, the central American isthmus from

Mexico to Panama, Northern Andes, Rift Valley of East

Africa and the Himalayas. For bats, the greatest number of

collisions was predicted in North America (figure 5).
4. Discussion
Previous studies into the collision risk of birds with terres-

trial wind farms have documented a high risk for

Accipitriformes (raptors and birds of prey) [41,42]. Further

studies have suggested that raptors, migratory soaring birds

and waterbirds may be particularly vulnerable [9,43–45].
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Similarly, our study showed that Accipitriformes had the

highest rates of collision. Among other orders, Buceroti-

formes (hornbills and hoopoes), Ciconiformes (storks and
herons) and some Charadriiformes (shorebirds) were also

vulnerable, but notably many waterbirds (e.g. Anseriformes)

were not.
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Although there was less variation in predicted mortality

between bat families (figure 3), a small number of Vespertilio-

nidae species were associated with relatively high rates of

collision, as also found in a recent review [8]. Our models pre-

dicted higher collision rates for bats than birds, as reported

elsewhere [15], which adds to the literature emphasizing the

risk that wind farms pose to bat populations [7,8,14].

For birds, vulnerability to collision was related to habitat,

migratory status and dispersal distance. High collision rates

for species associated with agricultural habitats may reflect

the disproportionate number of wind farms from agricultural

landscapes in our sample. Species associated with these

human-modified habitats, however, may be less likely to

avoid wind farms than those occupying natural landscapes

[46], while our results suggest that grassland species may

also be more vulnerable to collision.

Migratory species are often suggested as being vulnerable

to collision with wind farms [44], for which our results are

supportive. Previous work has suggested high rates of

collision with wind turbines at avian migratory bottlenecks

[9,41,42], and for migratory bats in North America [8,47],

suggesting migration may outweigh the greater exposure

time of residents to wind turbines [41].

Wind farms may have significant meta-population-level

impacts [45], for example on species with large home

ranges and moderate rates of dispersal [12]. The link, how-

ever, between dispersal distance and collision rate across

multiple species has not previously been identified, and

demonstrates that bird species dispersing short or very long

distances may have reduced vulnerability to collision com-

pared with species dispersing intermediate distances. Those

species dispersing furthest may exhibit unmeasured traits of

flight behaviour, such as flight height rendering them less

susceptible to collision, but the large uncertainty in the

effect emphasizes that further study is needed. For bats,

long-distance dispersers had the highest collision rates, but

certainty of behaviour for many species tempers our ability

to draw firm conclusions. Tree-roosting bat species were fre-

quently recorded in collision, potentially through attraction

mechanisms [48], although this effect was weaker than dis-

persal. Overall, these findings emphasize the need to

consider cumulative impacts of wind farms on populations,

particularly for migrants and wide-ranging species.

Our vulnerability estimates may not reflect population-

level impacts, to understand which requires further
consideration of population demography and other impact

metrics [22,45]. However, our findings may be problematic in

terms of species conservation, as the species groups with

the greatest rate of collision tended to be k-selected species

with low fecundity and late ages of maturity, and most sen-

sitive to impacts of additional mortality [49,50], such as

Accipitriformes, Bucerotiformes, Ciconiformes and Chara-

driiformes for birds, and a range of bat species. Avoiding

placement of wind farms in areas with populations or

high concentrations of such species, such as coastal areas

and migratory flyways (figure 5), would reduce potential

impacts of wind farms on biodiversity. Although some pas-

serine families (e.g. Motacillidae) and species (e.g. European

starling, Sturnus vulgaris) had high predicted rates of col-

lision, their r-selected life-histories and relatively high

abundances make it less likely that large population-level

effects would arise, as population growth rate is less sensitive

to reductions in adult survival [49].

Although as comprehensive as possible, our study has

some limitations. First, data were largely from well-studied

parts of Europe and North America. While our results can be

used to infer potential collision risk for species in other parts

of the world, uncertainty arises when extrapolating to under-

studied regions and taxa. This was particularly the case for

bats, where studies were exclusively from temperate northern

latitudes with low species diversity. More geographically wide-

spread studies, from the tropics and from countries with

rapidly growing wind industries (such as India and China),

are required to feed into meta-analyses like ours. In the absence

of such studies, our estimated collision rates should help indi-

cate vulnerable species in these areas. Second, collision rate

data were not available from offshore wind farms. Only 5%

of studies recorded collisions with marine species at coastal

wind farms, and further work is needed to estimate their

vulnerability to offshore wind turbines [51]. Third, trait

information for bats was less comprehensive than for

birds, meaning it was not possible to extrapolate from a

trait-based model globally in the same manner. We also

note the strong geographical variation in predicted bat mor-

tality rates between North America and Europe (figure 5),

and suggest further work is required to test whether this

effect is real. Fourth, although we corrected for data quality,

inevitably some variation will not be captured by our classi-

fication; for example, corrections for unsearchable portions

of the survey area were not always reported. Fifth, our
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study metric focused on a measured impact after collision

with turbines, reflecting both initial sensitivity and current

exposure. Our study, however, did not include future poten-

tial to habituate (adaptability), necessitating caution when

translating our findings more broadly. Finally, our list of

species putatively present at a wind farm was derived

from broad-scale distribution polygons, and so may have

included false negatives [27].

Given the recent dramatic increases in wind energy gen-

erating capacity in parts of the world where wind farms
have not previously been deployed [52], and probably contin-

ued increases to meet climate change mitigation targets, wind

farms pose an increasing threat to bird and bat species world-

wide. Our study can be used to mitigate this risk in two ways.

First, although uncertain, our species-level predictions of

collision rates provide a useful starting point for scoping

potential impacts of wind farms on species where collision

risk has not been studied. New wind developments should

preferably be in areas with low concentrations of species vul-

nerable to collision. Our results can help identify locations

http://rspb.royalsocietypublishing.org/
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based on the distribution of vulnerable species, which along-

side habitat restrictions on wind farm development, such as

in forested areas, can be used to minimize the risk of negative

biodiversity impact. Although country and regional maps

[53,54] should be developed to help identify local hotspots,

our global vulnerability maps (figure 5) are a useful starting

point, suggesting key areas and migratory pathways where

collision may occur. The agreement between our predictions

and species classified by the IUCN Red List as being

threatened by ‘renewable energy’ suggests an emerging

consensus for key taxa.

Second, there was a strong positive relationship between

wind turbine capacity and collision rate per turbine. The

strength of this relationship, however, was insufficient to

offset the reduced number of turbines required per unit

energy generation with larger turbines, at least for birds. There-

fore, to minimize bird collisions, wind farm electricity

generation capacity should be met through deploying fewer,

large turbines, rather than many smaller ones, supporting

suggestions for marine birds [16]. For bats, an optimum turbine

size of approximately 1.25 MW may minimize collision risk,

with the largest turbines associated with a disproportionately

high collision rate, but we again caution that model certainty

for bats was low for the reasons outlined. More research is

required to understand the relationship between collision risk

and turbine size for larger (and more efficient) turbines, and

how this may vary between habitats.
5. Conclusion
This study is the first global quantitative assessment from the

published literature of the relative vulnerability of different
species groups to wind farms. Wind farms have the potential

to benefit biodiversity through their contribution to climate

change mitigation, but our results emphasize the global

nature of the potential risks to biodiversity involved, which

needs to be accounted for through appropriate wind turbine

design and planning, if those risks are to be minimized.
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