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ABSTRACT

This paper aims at predicting trajectories of the detached fragments from wind turbines, in order to better quantify conse-
quences of wind turbine failures. The trajectories of thrown objects are attained using the solution to equations of motion
and rotation, with the external loads and moments obtained using blade element approach. We have extended an earlier
work by taking into account dynamic stall and wind variations due to shear, and investigated different scenarios of throw
including throw of the entire or a part of blade, as well as throw of accumulated ice on the blade. Trajectories are simu-
lated for modern wind turbines ranging in size from 2 to 20 MW using upscaling laws. Extensive parametric analyses are
performed against initial release angle, tip speed ratio, detachment geometry, and blade pitch setting. It is found that, while
at tip speeds of about 70 m/s (normal operating conditions), pieces of blade (with weights in the range of approximately
7-16 ton) would be thrown out less than 700 m for the entire range of wind turbines, and turbines operating at the extreme
tip speed of 150 m/s may be subject to blade throw of up to 2 km from the turbine. For the ice throw cases, maximum
distances of approximately 100 and 600 m are obtained for standstill and normal operating conditions of the wind turbine,
respectively, with the ice pieces weighting from 0.4 to 6.5 kg. The simulations can be useful for revision of wind turbine
setback standards, especially when combined with risk assessment studies. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ever-growing number of wind turbines installed near inhabited areas, buildings and community facilities, such as
bridges, power installations or highways, has resulted in an increasing concern by authorities to determine risk levels
associated with wind turbine blade failure. From a safety point of view, the most serious failure is associated with splintering
of rotor blades and detachment of debris, which could be thrown over long distances and damage people or property.
Ice-throw from wind turbines installed in cold climate is also of high concern, especially for wind turbines erected near
highways where the ice pieces thrown from a wind turbine may strike a passing car, which in the worst case may cause a
fatal accident.

Various types of hazards regarding operation of wind turbines have recently been reported by Durstwitz and the Caithness
Windfarm Information Forum.2, 3 According to a recent survey by the Caithness Windfarm Information Forum, blade
failures resulting in either whole blades or pieces of blades being thrown from the turbine are the most important causes
of turbine accidents.3 A comparative graph showing the growth of wind turbine accidents over the past four decades is
shown in Figure 1, where the share of blade accidents and accidents due to fire, which may eventually cause throw of fire
patches, are also presented. Due to such accident data, energy authorities all over the world have tried to enforce safety
distances around wind turbines and wind farms. The safety distance is a distance within which it is not allowed to build
human structures such as buildings and roads. Shown in Table I is an example of the safety distance standards defined by
different authorities. It can be seen from the table the values of offset safety distances fall within an extensive range of
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Figure 1. Comparison of wind turbine accidents and particularly blade failure data in a period from 1970s until 2014 (data taken from
Caithness Windfarms3).

Table I. Safety distances of wind turbines from human
structures as practiced in different regions of the world.17

Authority/source Safety distance [m] (ft)

France 1609 (5280)
Germany 1609 (5280)
Rural Manitoba, Canada (1981) (6500)
US National Research Council 762 (2500)
IL, USA 457 (1500)
Riverside County, CA, USA 3218 (10560)

MI, USA 304 (1000)

scales between 3.2km and 300m, and that the setback standards are not even similar in different regions of the same country.
To standardize such safety guidelines, it is useful to employ mathematical models of the throw in various conditions and
risk assessment tools to associate the probability of failure in each particular setting.

Motions of solid particles in fluids were first addressed analytically by Kirchhoff.4 He showed that the equations of
motion for a solid body in an ideal fluid reduce to a set of ordinary differential equations (ODE) based on Euler’s equations.
Further experimental investigations on falling objects revealed, despite originating from Euler’s equations, various states
of chaotic motion. It was also mathematically shown that Kirchhoff’s equations had been prone to yield chaotic solutions
[5]. Tanabe et al.6 developed a set of two-dimensional equations of motion (including rotation) based on simple mechanics
in which plates of zero thickness were subject to lift, friction and gravity forces. Based on those assumptions, they found
five different falling patterns, ranging from a periodic movement to chaotic random motions depending on the density ratio
between the solid and the surrounding fluid and on the length of the object. Pesavento and Wang7 and Andersen et al.8

performed more detailed studies to determine the motion of a falling two-dimensional elliptic object using direct numerical
simulation of the Navier–Stokes equations. They took added mass and added moment of inertia into account and analyzed
the transient motion and local jumps of the falling object thoroughly.

Due to complications in a real-life blade accidents (erratic motions, high Reynolds numbers, complex geometries etc.),
the fundamental studies mentioned above could only partially help understanding the physics of wind turbine blade throw
patterns. To cope with the wind turbine problems, simplified approaches were used. Macqueen et al.,9 for instance, studied
the problem of blade-throw from wind turbines, using classical ballistics and also assumption of constant lift and drag. A
lift coefficient of Cl = 0.8 and a drag coefficient of Cd = 0.4 were used for the gliding simulations, with Cl = 0.0 and Cd =
1.0 for the tumbling motion. However, the probability that gliding would occur was deemed very small. Their maximum
throw studies using simple ballistic analysis, that is, by neglecting aerodynamic forces, showed that in the extreme throw
velocity of approximately 310m/s, the maximum throw length reaches 10km.

One of the first detailed studies on the aerodynamics of a detached wind turbine blade was performed by Sørensen1 using
a blade element approach. In this approach, the detached blade is divided into a number of sections and the aerodynamic
loads are determined for each section. The total external aerodynamic load on the whole blade would then be determined
as the summation of the individual forces on each section.
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Recently, Rogers et al.10 used a dynamic model employing quaternions instead of Euler angles and rotation vectors to
form the orientation matrix and performed Monte Carlo simulations of a large set of initial conditions in order to obtain a
range of the throw distances.

Ice throw has also been investigated, especially for the turbines erected in the cold climate. Seifert et al. measured
ice-throw accidents together with a simple aerodynamic model and performed risk analysis of the ice fragments thrown
from the blades.11 Recently, a model of ice throw for a wind turbine in operation was presented by Biswas et al.,12 in
which calculations were carried out for ice pieces by neglecting lift and using a fixed drag coefficient of Cd D 1.0. It was
also estimated that including the highest possible, lift increases the throw distance by approximately a factor of two.

The problem of blade/ice throw has also been investigated through the window of probabilistic methods. Such meth-
ods deal with risk levels and probabilities that a certain throw distance will occur. Such studies are typically performed
together with a dynamic model for calculating the throw distances. Macqueen et al.,9 Morgan,13 Morgan and Bossanyi14

and Rogers et al.10 carried out risk analyses of ice throw to determine safety guidelines for wind developments in
ice-prone areas. Sørensen15 proposed a statistical model that determines risk levels of debris hitting people. Similarly,
Carbone and Afferrante16 performed a combined probabilistic and dynamic analyses to quantify hazards due to the
blade throw.

In the present work, detailed aerodynamic analysis are performed for simulating flying debris. The cases include blade
throw in which the blade together with its components is thrown, a case in which only a shell laminate is thrown and a
case involving detachment of ice fragments. The governing equations of motion form a set of 18 ODEs responsible for the
six degree-of-freedom motion. The resulting system of discretized equations are solved using an ordinary time integration
method. Throw distances for four different turbine sizes ranging from 2.3 to 20 MW are compared, by employing simple
upscaling rules. The computations are carried out for different wind and tip speeds.

2. MATHEMATICAL MODELING

The equations of motion for a detached blade include equations of translation and equations of rotation. These are obtained
using Newton’s second law and Euler’s equations of motion, with the aerodynamic forces obtained from tabulated airfoil
data. To be able to quantify the rotational motion of the detached blade, the moments of inertia around the rotation axes
are calculated. This, however, cannot be calculated in a fixed coordinate system (i.e., an inertial system) since both the
moments of inertia and the rotational speeds are varying and a solution would become very complicated. Instead, the
equations are computed around the body-fixed principal axis, and the obtained values are subsequently transformed to
the global (inertial) coordinate system to represent the absolute location and orientations. Two coordinate systems are
defined here: a global coordinate system x D .x, y, z/ with the origin on the tower basement and orthonormal right-handed
unit vectors .Ei,Ej, Ek/, with the y-axis in the wind direction and the z-axis in the upward direction. A body-fixed coordinate
system b D .xb, yb, zb/ is defined by an orthonormal right-handed unit vector .Er1, Er2, Er3/, with the origin located at the
center of gravity of the detached blade fragment and the third axis parallel to the length axis of the blade (Figure 2).

Figure 2. Sketch of the problem and definition of coordinate systems.
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The orientation of the detached part is determined through a matrix R, which gives the transformation from global
coordinates to the body-fixed coordinates2
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Equation (1) holds for transformation of any variable between the two coordinate systems. This way of defining a
vectorized rotation matrix (as opposed to Euler’s scalar angles) ensures uniqueness of orientation angles and avoids the
problem known as gimbal lock.

The full six degree-of-freedom motion is governed by Newton’s second law of motion and Euler’s equations of motion:

m Rxg D F C mg (2)

I. P!b D !b � .I.!b/ D M (3)
where m is the mass of the blade, xg is the position vector of the center of gravity, F is the aerodynamic force acting on
the center of gravity, g is the gravitational acceleration, I is the moment of inertia tensor, ! is the angular velocity in the
rotating frame of reference, M is the aerodynamic force acting along the principal axis of the moment of inertia tensor and
../ denotes differentiation with respect to time. To close the system, the following relationship between the motion of the
unit vectors of the body (the blade fragment) and the angular velocity is used:

Pr D ! � r (4)

where ! is the angular velocity of the blade fragment in the inertial coordinate system, which by equation (1) is
transformed into the local body-fixed coordinate system. The total set of equations are solved using a fourth-order
Runge–Kutta–Nystrom or a third-order Adams–Bashforth method. For more information about the mathematical and
numerical treatment of the equations, readers are referred to the early work of Sørensen.1

2.1. Aerodynamic modeling

For the solution of the system of ODEs, a blade element approach is employed in which each blade is divided into n sections
along the span. In each section, the external forces and moments are calculated from airfoil data based on the local wind
speed and relative velocities.

The three-dimensional edge effects are to some extent considered through the finite aspect ratio assumption of the blade,
and the aerodynamic coefficients of lift and drag are calculated for all angles of attack based on flat-plate theory. The
induced velocities are, however, neglected, and the Reynolds-number dependence of the airfoil data is disregarded. Once
the aerodynamic coefficients are found, the lift, drag and moments on the blade fragment are computed as

Li D
1

2
�v2

i AiCLi, Di D
1

2
�v2

i AiCDi (5)

where Li and Di are lift and drag forces on the i-th section, � is the air density, vi is the local relative airspeed, Ai D ci�ri
is the local planform area where ci and �ri are the local chord and the section lengths, and CLi and CDi are the sectional
lift and drag coefficients at the desired angle of attack.

The static forces aerodynamic coefficients of the airfoil only depend on the angle of attack. Unsteady effects at high
angles of attack are included by using the dynamic stall model of Øye.18 In this model, the dynamic lift coefficient is
obtained by interpolating between the lift coefficient of an airfoil in a fully attached flow and a lift coefficient of the airfoil
when the flow around the airfoil is fully separated, i.e.,

Cl,dyn D fsCl,inv.˛/C .1 � fs/Cl, fs.˛/ (6)

where Cl,inv is the lift coefficient for a fully attached flow (i.e., inviscid flow assumption) and Cl, fs is the lift coefficient for
fully separated flow. The stall-changing rate is defined as

dfs
dt
D

f st
s � fs
�

(7)

where fs is the time-dependent separation function, which can be thought of as the unsteady weighting function between
the fully attached and the fully separated flow. f st

s is a function of airfoil section,

f st
s .˛/ D

Cl,st.˛/ � Cl, fs.˛/

Cl,inv.˛/ � Cl, fs.˛/
(8)
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and � is an empirically determined time constant giving the time lag between the dynamic value of fs and its static value. It
follows from equation (7) that

fs.tC�t/ D f st
s C

�
fs.t/ � f st

s

�
exp

�
��t

�

�
(9)

2.2. The atmospheric boundary layer effects

The inlet wind is included as a velocity profile corresponding to the Atmospheric Boundary Layer (ABL). As a result, in
addition to simulating uniform inflow,1 it is possible to simulate throw distances for blades thrown in wind fields following
a power or logarithmic law, depending on the specific site information. The ABL wind profile as a function of height and
atmospheric conditions reads

uz D
u�
�

�
ln

�
z

z0

�
C  .z, z0, L/

	
(10)

where u� is the friction velocity, � is the von Karman constant (� 0.41), z0 is the roughness length,  is a function of
atmospheric stability and L is the Monin–Obukhov stability parameter (see Wyngaard19 for more details).

If no data are available in a specific site, and neutral ABL is assumed, a power law u.z/ D uhub.z=zhub/
˛ , ˛ � 0.14 will

be used for the wind velocity at different heights having the wind velocity at hub height as an input. The power-law method
is used for the parametric studies in this paper.

Using the mentioned wind profile and denoting the local position vector of a point p on the wing as Erpb, the local relative
wind velocity Eupb, as seen by the blade fragment, is given as

Eupb D
�
R
�

..Euwind � Eug/ � E!b � Erpb (11)

where the wind vector is assumed to be Euwind D .0, uy, 0/, neglecting the vertical and lateral components.

3. SIMULATION RESULTS

Simulations of both blade-throw and ice-throw distances are performed by solving the equations derived in the previous
sections using the in-house aerodynamic code Savbal*. The overall procedure for the solution consists of three stages,
comprising coordinate transformation, aerodynamics load assessment and time integration. The initial position, orientation
and velocities of the detached part are first evaluated at their local coordinates. Based on these values, an iterative procedure
starts where the local velocities are evaluated, according to exerted aerodynamic loads, and integrated to give the location
and orientation of the fragment in global coordinates until the fragment reaches the ground level.

For the blade-throw analysis, cases with different detached lengths and tip speeds are compared in two sub-cases: (1) the
whole blade together with its sandwich structure is thrown and (2) only the shell layer of the blade is thrown. For ice-throw
analysis, it turns out that the drag to mass ratio plays an important role for the magnitude of the throw distance. As a result, a
few cases with different CdA=m ratios (as discussed by Biswas et al.12) with both standstill and running turbine conditions
are simulated. The analyses are performed for different wind turbine sizes.

3.1. Turbine upscaling laws

The throw distance analysis was initially performed for a 2.3 MW turbine using publicly available data. A series of empir-
ical relations was then used to upscale the data for the larger turbines, and the analyses were performed for four different
wind turbine sizes, i.e., 2.3, 5, 10 and 20 MW. The scale-up factors are first obtained for the blade length, which scales
as the square root of the power ratio. Therefore, denoting the blade length, mass (applicable to both total sandwich struc-
ture and the shell laminate masses) and mass moment of inertia for the reference turbine with index a, i.e., ra, ma and Ia,
respectively, the corresponding values for the upscaled turbine, index b, can be obtained as

rb D ra

�
Pb
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�Sl
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�
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�Sm
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�
mb
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��
rb
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�2

D Ia

�
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�SmC2

(12)

*The computing code Savbal will be available upon request for further studies on this field.
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Table II. Characteristics of different turbine sizes considered in the throw analyses.

Size L� D L
R L (m) m (kg) Ix (kg�m2) Iy (kg�m2) Iz (kg�m2)

2.3 MW RD 45 m, H D 100 m 1.0 45 7.3E+3 0.1E+7 0.1E+7 0.3E+04
0.5 22.5 2.4E+3 0.1E+6 0.1E+6 0.40E+03
0.2 10 4.1E+2 0.4E+04 0.4E+04 0.2E+02

5 MW RD 66 m, H D 147 m 1.0 66 2.6E+04 0.9E+07 0.9E+07 0.2E+05
0.5 33 8.2E+03 0.1E+07 0.1E+07 0.3E+04
0.2 14 1.7E+3 0.3E+05 0.3E+05 0.2E+03

10 MW RD 93 m, H D 208 m 1.0 93 8.2E+04 0.5E+08 0.5E+08 0.1E+06
0.5 46.5 2.7E+04 0.6E+07 0.6E+07 0.2E+05
0.2 20 5.3E+3 0.2E+06 0.2E+06 0.1E+04

20 MW RD 132 m, H D 294 m 1.0 132 2.6E+05 0.3E+09 0.3E+09 0.9E+06
0.5 66 8.7E+04 0.4E+08 0.4E+08 0.1E+06
0.2 29 1.6E+04 0.1E+07 0.1E+07 0.8E+04

(a)

(b)

Figure 3. Schematic graphs of the throw distances for half-blade detachment changing (a) the initial release angles (upward-
clockwise reference) and (b) the tip speed velocities for the 2.3 MW reference turbine.

where I D .Ix, Iy, Iz/. In the previous relations, Sl D 1=2 and Sm depends on actual scaling laws when increasing the
size of the rotor. From simple upscaling rules, Sm would be equal to 3 , but because of more elaborate rotor designs, this
parameter is usually found to be somewhat smaller. In the present work, we employ Sm D 2.3 (see UpWind20 and TPI
Composites21 for more information on turbine scaling).
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3.2. Full-blade throw analysis

In this section, the throw distance analyses are performed for four different turbine sizes based on the upscaling rules
presented previously. Here, the term full blade refers to the case of blade shell including stiffening members (upper and
lower shells, spar, etc.). The dimensions and other characteristics of each turbine size are reported in Table II. In accordance
with the copyright policies of the turbine manufacturers, the data for the reference turbine (2.3 MW) do not correspond to
an existing turbine but are chosen to mimic a real turbine.

The analysis included a parametric study, where the effects of the length of the detached parts, incoming wind speeds,
blade tip speeds and wind turbine size on the blade-throw distances were investigated. The height of the tower is in all
considered cases assumed to be equal to the rotor diameter. Figure 3 shows three-dimensional visualizations of the throw
distances of a half-blade piece thrown of the 2.3 MW machine for different initial conditions. The small colored patches in
the figure shows the instantaneous orientation of the detached part. For the sake of clarity, only some selected curves are
shown in the figure. Figure 3(a) shows the effect of release angle on the throw distance, and Figure 3(b) shows the effect

Figure 4. Throw distance calculations of full blade with three different detached lengths for 2.3, 5, 10 and 20 MW turbines at the
normal operating condition of Vtip D 70 m/s. The horizontal axis shows the wind speed at the hub height and the vertical axis

represents the throw distance.Þ Þ Þ: L� D 0.2;���: L� D 0.5; and o o o: L� D 1.

Figure 5. Throw distance calculations of full blade with three different detached lengths at a high tip speed of Vtip D 100 m/s.
Legends are similar to those in Figure 4.
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of release tip velocity. As can be seen, the release tip speed is a very important factor influencing the maximum throw
distances. Normal operating conditions with Vtip D 70 m/s result in throw distances of about 500 m long, whereas a tip
speed of Vtip D 150 m/s may lead to throw distances up to 2 km.

For the quantitative analysis performed in the next section, the fragments are thrown at a release angle of 45ı from
the horizon (225ı measured upward-clockwise) in all calculations. The full-blade and blade-shell throw calculations are
performed using flat-plate assumption for the aerodynamic coefficients.

Figures 4, 5 and 6 show the throw distances for three different fragments of the full blade for a combination of three
blade tip speeds (vtip D 70, 100 150 m/s) and four different incoming wind velocities (with power-law profiles) ranging
between 0 and 22 m/s at hub height.

The figures are divided into three groups, the first group (Figure 4) shows the throw distances, relative to the tower
position, for different incoming wind speeds (shown on the horizontal axis) and different detachment lengths at a tip speed
of Vtip D 70 m/s. The detachment length L�, shown with markers, is the length of the detached piece, measured from the
blade tip and normalized by the blade length. The throw distances are calculated and plotted for the four considered wind
turbine sizes ranging from 2.3 to 20 MW. As can be seen, except for the 2.3 MW machine, the effect of the incoming wind
on the throw distance is almost negligible. Similarly, the effect of turbine size on the throw distance is minimal and the main

Figure 6. Throw distance calculations of full blade with three different detached lengths at an extreme tip speed of Vtip D 150 m/s.
Legends are similar to those in Figure 4.

Figure 7. Sensitivity of throw distances of full blade to the initial pitch setting for 2.3, 5, 10 and 20 MW turbines operating at
Vtip D 70 m/s. Þ Þ Þ: L� D 0.2;���: L� D 0.5; and o o o: L� D 1.
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parameter governing the throw distance is the detachment length. The minimum throw distance is obtained for the heaviest
fragment (L� D 0.2) thrown from the 2.3 MW turbine, while the maximum throw distance of all cases at Vtip D 70 m/s is
around 600 m for the lightest fragment (L� D 0.2).

Figure 5 shows the same graphs for the higher tip speed of Vtip D 100 m/s, where the maximum throw distances for the
smallest and largest turbines are about 500 and 1000 m, respectively, while the minimum throw distance is reached for a
full-blade throw (L� D 1) of a 2.3 MW turbine. Also, it is clear that the effect of the hub-height wind velocity is still very
small. Figure 6 shows the same plots for the most extreme case considered, i.e., using a tip speed of Vtip D 150 m/s. Here,
the thrown pieces reach throw distances ranging from approximately 350 m for the full-blade throw for a 2.3 MW turbine
to about 2000 m for the lightest fragment thrown from the 20 MW turbine.

As can be seen from the red curve in Figure 6 for the 10 MW turbine (bottom-left), the throw distance has unexpectedly
decreased when increasing the wind speed from 10 to 15 m/s. This behavior is somehow repeated to a smaller extent in other
cases, especially at higher tip velocities. The unexpected results can happen because of the fact that a small change in the
initial conditions can change the force/moment distributions on the fragments, thereby changing the trajectory drastically.
To investigate the erratic motion further, the effect of initial pitch setting on the trajectory is analyzed in the next section.

Figure 8. Sensitivity of throw distances of full blade to the initial pitch setting at Vtip D 100 m/s. Legends are similar to those
in Figure 7.

Figure 9. Sensitivity of throw distances of full blade to the initial pitch setting at Vtip D 150 m/s. Legends are similar to those
in Figure 7.
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3.2.1. Effect of initial pitch settings.
As explained earlier, analyses of the throw trajectories show that the throw distance for a particular wind turbine sometimes
exhibits an erratic behavior going from one dominant solution to another with only a slight change in the initial conditions.

Table III. Aspect ratios, reference chord length Cref and detached mass m of the blade shells
(�shell D 1700 kg/m3) used for throw simulation from turbines of different sizes.

2.3 MW 5 MW 10 MW 20 MW

Cases� AR Cref (m) m (kg) Cref (m) m (kg) Cref (m) m (kg) Cref (m) m (kg)

AR D 1 34 83 184 408
AR D 5 1 170 1.5 415 2.1 920 3 2040
AR D 10 340 830 1840 4080

Figure 10. Throw distance calculations of blade shell with three different aspect ratios (invariant chord length for each turbine) for 2.3,
5, 10 and 20 MW turbines at a normal operating condition of Vtip D 70 m/s. Þ Þ Þ: AR D 1;���: AR D 5; and o o o: AR D 10.

Figure 11. Throw distance calculations of blade shell at high tip speed of Vtip D 100 m/s. Legends are similar to those
in Figure 10.
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To understand this behavior, a sensitivity study is performed to investigate the effects of the initial pitch settings on the
trajectory. Figures 7–9 demonstrate the pitch angle dependence of the full-blade throw distances for different turbine sizes
and tip speeds, where the throw distances are obtained for release pitch angles ranging from 0ı to 90ı. As can be seen, the
pitch setting has a substantial impact especially for the lighter parts. In general, higher throw distances are achieved using
fragments thrown at lower pitch angles, which are due to the reduced drag. The effect of pitch angle on the heavier pieces
(green and blue curves) is, however, smaller. The reason for this is that the aerodynamics plays a less significant role for the
heavy parts in the throw distance calculation and the distance is mainly governed by the inertial forces. For the extreme tip
velocity, and especially for the 2.3 MW turbine, increasing the pitch angle produces erratic throw distances for the lightest
fragments. The exact reason for such erratic behavior has not been yet understood, but it is most likely explained by the
physics of the problem, as explained earlier.

Figure 12. Throw distance calculations of blade shell at an extreme tip speed of Vtip D 150 m/s. Legends are similar to those
in Figure 10.

Figure 13. Sensitivity of throw distances of blade shell to the initial pitch setting at Vtip D 70 m/s. Legends are the same as
in Figure 10.
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3.3. Blade-shell throw analysis

An analysis of available data from blade failure accidents shows that depending on the manufacturing method and the
structural integrity of the blade, it might first shatter into lighter parts, with the consequence that the shell layer is most
likely to be thrown away. Three cases of different aspect ratios are considered for the shell throw analyses. For the reference
case of 2.3 MW turbine, an average chord of 1 m and a shell thickness of 2 cm are chosen, and three aspect ratios (where
AR is defined as the ratio of span to average chord) of 1, 5 and 10 are investigated. Then keeping the same AR, the analysis
is repeated for each of the turbines introduced in the preceding sections. The density of the shell, consisting of fiber and
glass, is assumed to be 1700 kg/m3. Table III shows the test cases used for blade shell throw simulations.

Throw distances for the four different turbine sizes with the same working conditions as those for the full-blade case
are plotted in Figures 10–12. Here, the non-dimensional length is replaced by the aspect ratio of the blade shell and three
different aspect ratios are considered. As can be seen, increasing the hub-height wind speed and the turbine size generally
results in larger throw distance. Nevertheless, an erratic behavior, as mentioned in the previous section, appears in the

Figure 14. Sensitivity of throw distances of blade shell to the initial pitch setting at Vtip D 100 m/s. Legends are the same as
in Figure 10.

Figure 15. Sensitivity of throw distances of blade shell to the initial pitch setting at Vtip D 150 m/s. Legends are the same as
in Figure 10.
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simulation results. By comparing the shell-throw graphs with the corresponding figures from the full-blade analysis, the
throwing range of the blade shells and that of the full-blade structure are seen to be of the same order of magnitude. That
is, the range is between 300 m for the 2.3 MW turbine operating at Vtip D 70 m/s and a maximum of 2200 m obtained
for the 20 MW turbine in the extreme case of Vtip D 150 m/s. However, unlike the full-blade throw cases, the case with
the smallest length (AR D 1) reaches the least throw distance, whereas for the full blade, the smallest fragment reaches the
highest distance. This is most probably due to the fact that the small shell object is lighter and the corresponding inertial
force is relatively small as compared with the drag forces.

As a comparison, the throw distances obtained for the ballistic motion of an equivalent particle in vacuum was also
performed (results not shown), in which case there is no aerodynamic forcing on the objects. The results revealed that the
ballistic throw distances are the most extreme cases in terms of throw distance.

3.3.1. Effect of initial pitch settings.
Similar to Section 3.2.1, the role of initial pitch setting on the trajectory of thrown blade-shell debris is assessed.
Figures 13–15 show the pitch angle dependence of the throw distances for different turbine sizes and tip speeds for the
blade-shell cases. Similar to the full-blade throw cases, the pitch setting has a substantial impact on the throw distance of
thrown blade-shell structures. One major difference with the full-blade cases is, however, that the effect of the shell aspect
ratios on the throw distance is much less significant and all of the cases show similar behavior with AR D 1 cases (red
diamonds), predicting smaller throw distances in general.

3.4. Ice throw

For the analysis of the ice throw, the same procedure as for the blade throw is applied except that the throw analysis is
not performed for the extreme tip speed conditions but only for the standstill where the tip speed is zero, and the running
conditions, where the turbine is assumed to rotate in its normal operational mode at a tip speed of 70 m/s. For the icing case,

Table IV. Aspect ratios, reference chord length Cref and detached mass m of the ice fragments
(�ice D 0.7 kg/m3) used for throw simulation of turbines of different sizes.

2.3 MW 5 MW 10 MW 20 MW

Cases� AR Cref (m) m (kg) Cref (m) m (kg) Cref (m) m (kg) Cref (m) m (kg)

AR D 1 0.18 0.43 0.97 2.16
AR D 2 0.1 0.36 0.15 0.87 0.2 1.95 0.3 4.33
AR D 3 0.54 1.31 2.94 6.49

Figure 16. Throw distance calculations of ice fragments for three different aspect ratios for 2.3, 5, 10 and 20 MW turbines in standstill
operation (Vtip D 0 m/s).Þ Þ Þ: AR D 1; ���: AR D 2; and o o o: AR D 3.
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a density of 700 kg/m3 is used (see also Seifert et al.11). The dimensions of the tested ice fragments and corresponding
turbine sizes are shown in Table IV. According to field studies performed by, e.g., Cattin et al.,22 most of the ice fragments
thrown away from turbine are broken into objects that typically are smaller than 1 kg. However, fragments as heavy as up
to 1.8 kg have also been observed. Because the pieces are so light, the throw distance of an ice piece is mainly governed by
the drag forces applied on it (which are only functions of mass–area ratio) and the incoming wind.

Similar to the previous section, studies of the effects of different parameters on throw distances are performed and
plotted in Figures 16 and 17 with the graphs structured in the same way as in the previous sections.

For the simulations, no lift is considered and the drag coefficient according to the flat-plate assumption is used. Figure 16
shows that the throw distances of the standstill case range from 30 to 100 m for different turbine sizes and incoming wind
speeds. For the running conditions however, the fragments can reach distances up to 600 m. It is also clear from the figure
that in many cases the aspect ratio does not play a significant role in the determination of throw distances.

3.5. Maximum throw distances

This section presents a summary of the previous results in terms of maximum throw distances. The maximum throw
distances are obtained from the entire set of previous simulations regardless of the size and upcoming wind speed and
plotted in Figure 18 for the full-blade and blade-shell cases and in Figure 19 for the ice-throw cases, respectively. In all

Figure 17. Throw distance calculations of ice fragments for three different aspect ratios for turbines in normal operation (Vtip D
70 m/s). Legends are the same as in Figure 16.

Figure 18. Maximum throw distances obtained for (a) full blade and (b) blade shell in different operating conditions. Blue line: Vtip D
70 m/s as a function of turbines power.
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Figure 19. Maximum throw distances obtained for the ice throw in (a) standstill operation, i.e., Vtip D 0 m/s and (b) normal operating
condition, i.e., Vtip D 70 m/s as a function of turbines power.

figures, the horizontal axis shows the turbine capacity and the vertical axis represents the maximum throw distance. It can be
concluded that, in general, the tip speed has a large impact on the throw distances. From Figure 18(a), the turbine size does
not affect the throw distances drastically for the lower tip speeds, whereas throw distances at high tip speeds experience a
significant growth with increasing turbine size. Figure 18(b), on the other hand, shows that the effect of turbine size on the
throw distance for the shell parts is almost negligible.

4. CONCLUDING REMARKS

Trajectory analysis of detached parts of blades and ice fragments thrown from horizontal-axis wind turbines was studied
extensively using Newton’s and Euler’s equations of motion and rotation, employing a blade element approach for the aero-
dynamics. Full-blade and blade-shell analyses were performed for turbines running under different tip velocities. Turbine
upscaling laws were derived, and simulations of throw distances were performed for four different turbine sizes, ranging
from existing 2.3 MW machines to future 20 MW turbines.

In some cases, erratic behavior was observed in the computations, where a small change in one parameter could influence
throw distance drastically. The behavior was believed to depend highly on the initial conditions. A likely explanation is
that a small change in positioning and velocity components in some cases alters the distribution of forces on the detached
objects and causes significant changes in the trajectory.

Maximum throw distances obtained at different tip speeds and detachment sizes were analyzed, and it was shown that
the tip speed plays the most important role in the throw distance. From the full-blade throw analysis, it was shown that,
when released at extreme tip speeds, throw distance picks up more rapidly with the tip speed rather than throw at lower
tip speeds (looking at the absolute throw distances). The considered [thrown] full-blade pieces reached approximately 700,
900 and 2000 m at tip speeds of 70, 100 and 150 m/s, respectively. For the blade shell, throw distances were found to be
approximately constant as turbine size escalates, and of the same order of magnitude as in the full-blade throw. Throw
calculations were also obtained at the tip speeds of Vtip D 0 and Vtip D 70 m/s for ice pieces of three different aspect
ratios and it was seen that the maximum throw distances scaled almost linearly with the turbine size irrespective of the tip
speed. The ice-throw distances reached about 100 and 600 m in standstill Vtip D 0 m/s and normal operating conditions
Vtip D 70 m/s, respectively. The throw distances presented by this study were obtained with respect to a set of initial
parameters without taking into account their probabilities of occurrence. The authors are extending the current study to
include the risk levels associated with each of the cases.
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