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Insufficient sleep and circadian rhythm disruption are associated
with negative health outcomes, including obesity, cardiovascular
disease, and cognitive impairment, but the mechanisms involved
remain largely unexplored. Twenty-six participants were exposed
to 1 wk of insufficient sleep (sleep-restriction condition 5.70 h, SEM =
0.03 sleep per 24 h) and 1 wk of sufficient sleep (control condition
8.50 h sleep, SEM = 0.11). Immediately following each condition, 10
whole-blood RNA samples were collected from each participant,
while controlling for the effects of light, activity, and food, during
a period of total sleep deprivation. Transcriptome analysis revealed
that 711 genes were up- or down-regulated by insufficient sleep.
Insufficient sleep also reduced the number of genes with a circadian
expression profile from 1,855 to 1,481, reduced the circadian ampli-
tude of these genes, and led to an increase in the number of genes
that responded to subsequent total sleep deprivation from 122 to
856. Genes affected by insufficient sleep were associated with cir-
cadian rhythms (PER1, PER2, PER3, CRY2, CLOCK, NR1D1, NR1D2,
RORA, DEC1, CSNKTE), sleep homeostasis (IL6, STAT3, KCNV2,
CAMK2D), oxidative stress (PRDX2, PRDX5), and metabolism
(SLC2A3, SLC2A5, GHRL, ABCAT1). Biological processes affected in-
cluded chromatin modification, gene-expression regulation, macro-
molecular metabolism, and inflammatory, immune and stress
responses. Thus, insufficient sleep affects the human blood tran-
scriptome, disrupts its circadian regulation, and intensifies the
effects of acute total sleep deprivation. The identified biological
processes may be involved with the negative effects of sleep loss
on health, and highlight the interrelatedness of sleep homeostasis,
circadian rhythmicity, and metabolism.
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Insufﬁcient sleep, defined as inadequate or mistimed sleep, is
increasingly recognized as contributing to a wide range of
health problems (1). Multiple epidemiological studies have
shown that self-reported short sleep duration (defined in most
studies as <6 h) is associated with negative health outcomes,
such as all-cause mortality (2), obesity (3), diabetes (4), cardio-
vascular disease (5), and impaired vigilance and cognition (6).
Laboratory studies, in which the sleep of healthy volunteers was
restricted, typically to 4 h for 2-6 d, have identified physiological
and endocrine variables that may mediate some of these effects
(7), but in general the mechanisms by which insufficient sleep
leads to negative health outcomes remain unidentified.
Microarray studies designed to investigate the processes un-
derlying sleep regulation in rodents have established that, in brain
tissue, sleep deprivation is associated with prominent changes in
gene expression, although the number of genes affected varied
widely between studies (8) and the mouse strains used (9). Genes
up-regulated during sustained wakefulness (i.e., acute total sleep
loss) belonged to functional categories, such as synaptic plasticity,
heat-shock proteins, and other molecular chaperones, whereas
reductions in transcript levels have been reported for genes in-
volved in macromolecular biosynthesis and energy production
(10). In the presence of a sleep-wake cycle, ~8% of the brain
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transcriptome has been reported to be expressed in a circadian
manner (i.e., with an ~24-h periodicity), whereas during acute
sleep loss, the number of rhythmically expressed transcripts is
reduced to ~1.5%, implying a prominent acute effect of the sleep-
wake cycle on transcription (9). Although the sleep-wake cycle is
generated by the brain, the effects of acute sleep deprivation are
not limited to the brain. In fact, the liver transcriptome is affected
to a larger extent by sleep loss than the brain transcriptome (9).

Acute sleep loss is a powerful tool to activate sleep regulatory
mechanisms, but it is not necessarily the most relevant manipu-
lation to model the kind of sleep loss experienced in society, in
which people often get some, but insufficient sleep across every
24-h period. Recently, 2 wk of timed sleep restriction in mice was
shown to disrupt diurnal rhythmicity in the liver transcriptome to
a much larger extent than in the suprachiasmatic nucleus of the
hypothalamus, the site of the master circadian oscillator (11).
Biological processes affected included carbohydrate, lipid, and
amino acid metabolism, providing clues as to how sleep re-
striction may lead to some of the reported health problems as-
sociated with insufficient sleep in humans. Thus, animal studies
have established that both chronic insufficient/mistimed sleep and
acute sleep loss lead to changes in the transcriptome, including its
circadian modulation, and that these changes are tissue-specific.

Effects of chronic insufficient sleep on the global transcriptome
have, to our knowledge, not been reported in humans. One ob-
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vious difficulty with human studies is that the tissues of interest,
such as brain or liver, are not accessible for repeated sampling.
Several transcriptome profiling studies of different conditions and
diseases have, however, indicated that the transcriptome of leu-
kocytes and whole blood may constitute an “accessible window to
the multiorgan transcriptome” (12, 13). The blood transcriptome
is altered in several neuronal and metabolic disorders and does
not merely represent changes in the primary function of leuko-
cytes in the immune system. The use of “bloodomics” thus makes
possible the noninvasive and repeated sampling from participants
undergoing carefully designed study protocols. This approach will
enable the identification of gene-expression differences repre-
sentative of the whole organism and not only those differences
that are specific to immune function, which is in itself well known
to be affected by sleep deprivation and circadian rhythmicity (14).

Many physiological and molecular processes are modulated by
circadian rhythms. Furthermore, genes involved in the genera-
tion of circadian rhythms have been identified and shown to
relate intimately to metabolism and other processes associated
with health and disease (15, 16). Accurate assessment of circa-
dian rhythmicity requires that confounding factors, such as the
sleep-wake cycle, the light-dark cycle, activity, and food intake,
which may directly affect the transcriptome, are carefully
controlled. Therefore, to assess the effects of insufficient sleep
on the whole-blood transcriptome, we conducted frequent RNA
sampling over more than one complete circadian cycle, using an
established constant routine protocol to control for these con-
founding factors (17).

Results

Effects of Protocol on Sleep, Waking Performance, and Circadian
Phase of the Melatonin Rhythm. In this balanced, cross-over de-
sign (Fig. 1), participants obtained on average 5.70 h (SEM = 0.03)
of polysomnographically assessed sleep per 24 h during the seven
nights of the sleep-restriction condition, and 8.50 h (SEM = 0.11)
during the seven nights of the control condition. Sleep obtained in
the sleep-restriction condition was not sufficient to maintain
alertness and performance. On the last day of sleep restriction,
participants were significantly more sleepy, as scored on the Kar-
olinska Sleepiness Scale [4.3 (SEM = 0.2) vs. 3.0 (SEM = 0.2); P <
0.0001], and had more lapses of attention [4.9 (SEM = 0.4) vs. 4.0
(SEM = 0.4); P = 0.0036] in the Psychomotor Vigilance Task.
The melatonin rhythm, which is a reliable marker of circadian
rhythms driven by the hypothalamic circadian pacemaker, was
affected by sleep restriction such that the midpoint occurred
significantly later after sleep restriction than after the control
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Fig. 1. Study protocol. The study protocol consisted of two 12-d laboratory
sessions in a cross-over design. After two baseline/habituation nights, par-
ticipants were scheduled to seven consecutive sleep opportunities of 6 h in
the sleep-restriction condition and seven consecutive sleep opportunities of
10 h in the control condition. Following the final sleep restriction or control
sleep opportunity, participants were subjected to a period of extended
wakefulness (39-41 h of total sleep deprivation), which included hourly
melatonin assessments, a well-established marker of circadian phase, and
three hourly RNA samplings, under constant-routine conditions. Follow-
ing a 12-h recovery sleep opportunity participants were discharged from
the study.

Constant
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Constant
Routine

Sleep Restriction
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condition (sleep restriction: 0501 hours, SEM = 19 min; control:
0415 hours, SEM = 19 min; P < 0.0001), and the duration of
melatonin secretion was nonsignificantly reduced (sleep re-
striction: 9 h 35 min, SEM = 11 min; control: 9 h 53 min, SEM =
12 min; P = 0.099).

Effects of Sleep Restriction on the Blood Transcriptome. Main effect of
sleep condition. For ANOVA, in each participant and for each
condition, the transcriptome was analyzed in 10 blood samples
collected at three hourly intervals during a period of sustained
wakefulness (total sleep deprivation for one day, one night, and
the following day) after seven nights of either the sleep re-
striction or the control condition (Fig. 1). Because sleep re-
striction affected the melatonin rhythm, and differentially so
between subjects, we aligned the transcriptome profiles with the
respective individual melatonin profiles.

Mixed-model ANOVA for repeated measures revealed a main
effect of sleep condition (sleep restriction vs. control) on the
levels of transcripts encoded by 711 genes (~3.1% of the genes
determined as present in the arrays) (Fig. 24 and Dataset S1). Of
these genes, 444 were down-regulated and 267 were up-regulated
following sleep restriction. The two genes that were most sig-
nificantly affected by sleep condition were MFNG and DCAFS5
(Fig. 2B), which were down-regulated in response to insufficient
sleep but had not previously been directly implicated in sleep
regulation or circadian rhythms. Genes related to circadian
rhythms and sleep, which were down-regulated after sleep re-
striction, included RORA (Fig. 2B), IL6, PER2, PER3, TIMELESS,
and CAMK2D; PRDX5 (Fig. 2B), PRDX2, DECI1, CSNKIE, RHO,
and OPNILW were up-regulated.

Gene-enrichment and functional annotation analyses identified
several distinct processes that were significantly associated with
the up- and down-regulated genes. For genes down-regulated
following sleep restriction compared with control, the associated
processes included chromatin modification and organization,
gene expression, nucleic acid metabolism, nucleic acid binding,
RNA binding, and cellular macromolecule metabolism; those
associated with up-regulated genes included cellular response to
oxidative stress, cellular response to reactive oxygen species, and
response to stress (Fig. 2C).

In addition to the main effect of sleep condition, ANOVA also
revealed that the effect of circadian time-bin (i.e., the melatonin
phase-aligned sampling times) was significant for 22,401 probes
that target 17,056 genes (75%), and 252 probes that target 232
genes (1%) showed a significant interaction between sleep con-
dition and circadian time-bin [P < 0.05; Benjamini and Hochberg-
corrected for multiplicity (18)]. This finding suggests that the
expression or processing of many transcripts changed over the
sampling period, and that this time course was affected by prior
sleep condition (sleep restriction vs. control).

Time-course analysis of gene expression. Because ANOVA does not
characterize the nature of the change of gene expression with
time, we subjected all transcripts to a time-course analysis that
identified those transcripts that exhibited a circadian pattern of
expression and/or whose expression increased or decreased with
time-awake (data summarized in Fig. 3 and Dataset S2).

Circadian rhythms in gene expression. Prevalent circadian genes were
defined as those targeted by probes that showed a significant cir-
cadian oscillation in transcript levels in the number of participants
that resulted in a false-discovery rate (FDR) of <5% in each con-
dition. Assessment of individual expression profiles for a prevalent
oscillatory component with a ~24-h period in the control condition
identified 1,855 (8.8%) circadian genes, which included PERI,
PER2, PER3 (Fig. S14), NPAS2, CSNKIE, RORA, NRIDI (REV-
ERB-a) (Fig. S1B), NRI1D2 (REV-ERB-f), and other genes asso-
ciated with circadian rhythms, sleep, and metabolism (Figs. 34 and
4A4). After sleep restriction, the total number of circadian genes was
reduced to 1,481 (6.9%) (Fig. 34 and Dataset S2). Comparing the
genes in the two conditions showed that 793 genes were circadian in
both conditions, and 688 genes were only circadian following sleep
restriction. Gene-enrichment analysis showed that the genes that
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were circadian after sufficient sleep but were no longer circadian
following sleep restriction were significantly associated with bi-
ological processes that included inositol triphosphate kinase ac-
tivity (P = 0.033), phospholipid transporter activity (P = 0.033),
transferase activity (P = 0.033), nucleotide binding (P = 0.033), and
catalytic activity (P = 0.044). In contrast, the 688 genes that became
circadian after sleep restriction were associated with processes such
as alanyl-tRNA aminoacylation (P = 0.029), alanine-tRNA ligase
activity (P = 0.0076), and translational elongation (P = 0.037).
Biological processes and molecular functions associated with the
793 genes that were classified as circadian in both condltlons in-
cluded those related to T-cell activation (P = 2.9 x 1079), lymphocyte
activation (P = 2.6 x 10~°), leukocyte activation (P = 7.5 x 1077),
1nﬂammatory response (P = 3.6 x 10~°), immune response P =
1.3 x 107°), response to external stimuli (P = 2.0 x 107°), cytokine
receptor activity (P = 0.016), cytokine binding (P = 0.037), and
hydrolase activity (P = 0.011).

Circadian phase, amplitude, and waveform of gene expression. We an-
alyzed the phase, amplitude and waveform of circadian transcripts
in the two conditions. We first used a circular self-organizing map
(SOM) to identify distinctive temporal patterns within the set of
prevalent circadian profiles in the control condition (Fig. 44).
This analysis identified median circadian expression profiles that
separated into five clusters (C1-C5 in Fig. 44), with peak times
ranging from late in the biological day/early night (cluster 1), the
biological night (clusters 2 and 3), and the early and middle of the
biological day (clusters 4 and 5). Well-known circadian/sleep
genes in cluster 1 included NFKB2, CSNKIE, and RORA. Genes
whose transcripts peaked during the biological night (clusters 2

Moller-Levet et al.

(number 10 of the top 10). P values are the Benjamini
and Hochberg (18) -corrected Pvalues as calculated by
WebGestalt (62).

and 3) included known sleep- and circadian-related genes, such as
PERI, PER2, PER3, NRIDI1, NRID2, and NPAS2. Genes with
maximum transcript levels during the biological day (clusters 4
and 5) included kinases (MAPKAPK2, MAP3K3, CMAKK?), in-
terleukin-related transcripts (ILIB, ILIR2, ILIRN, ILIRAP,
ILSRBF, IL13RA1), tumor necrosis factor receptors (TNFA1P6,
TNFSF4, TNFRSFIDC, TNFRSFIA, TNFRSF9), and lipid me-
tabolism transcripts (A4BCAI, ABCD1, ABCG]), in addition to
genes of known circadian or sleep interest, such as ARNTL
(BMALI), GHRL, STAT3, and PROK2.

Control N=1,855 Control N=76 Control N=46
32 37
44 9
444 361
SR N=488 SR N=370
Circadian Downward trend Upward trend

Fig. 3. Intersection of genes identified as circadian and time-awake-dependent
in control and sleep-restriction (SR) conditions. (A) Venn diagram of preva-
lent circadian genes. (B) Venn diagram of genes identified as having
a prevalent time-awake upward trend. (C) Venn diagram of genes identified
as having a prevalent time-awake downward trend.
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Fig. 4. Effect of sleep restriction on the phase of
circadian genes. (A) Genes with a prevalent circa-
dian variation during the constant routine/total
sleep deprivation after the control condition (2,103
probes that target 1,855 genes, FDR <5%). Heatmap
rows correspond to the median of the melatonin-
aligned probe values across all participants in the
control condition. Rows are clustered based on
a circular self-organizing map. Cluster means are
plotted above as time-series and the number of
genes per cluster (C1-C5) is indicated in parenthesis
(genes belonging to multiple clusters are counted in
each cluster independently). Color codes to the left
of the heatmap correspond to the colors of the
clusters. Sampling times and melatonin profile
shown correspond to the average values across all
participants in the control condition. Genes related
to circadian rhythmicity and sleep (according to
Gene Ontology) are indicated in the heatmap (colors
indicate cluster location). (B) Phase histogram of
melatonin-aligned peak times of prevalent circadian
genes following control (black contour; 2,103 probes
circadian in an average of 11.56 participants, n =
24,311) and sleep restriction (red contour; 1,644
probes circadian in an average of 10.50 participants,
n = 17,276). The distribution of the phases is signif-
icantly different between conditions (on 1-h binned
data, % = 1305.785, df = 23, P < 2.2 x 107'®). Histo-
gram bins are 1-h-wide and bin heights are normal-
ized to the maximum bin height per variable. The
relative clock times and melatonin profile shown
correspond to the average values across all partic-
ipants and sleep conditions. (C) The top 10 enriched
Gene Ontology Biological Processes and Molecular
Functions within the circadian gene list of the control
condition as identified by WebGestalt when using
the human genome as a background (62). Percen-
tages are based on the number of unique gene
symbols annotated as belonging to a specific bi-
ological process/molecular function compared with
the number of unique gene symbols within the
entire gene list. Color bars indicate the enrichment
of a process/function, where red is the most
enriched (top process/function) and yellow the least
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For each circadian transcript, we next assessed the melatonin-
aligned peak times of the circadian component of each time course
and plotted the distribution of these phases (Fig. 4B). The distri-
bution was bimodal with peaks during the night (in-phase with
melatonin; 1,072 circadian genes, 5.1% of all genes, 57.8% of
circadian genes) and the day (out-of-phase with melatonin; 591
genes, 2.8% of all genes, 31.9% of circadian genes). Gene On-
tology analysis of the circadian genes in the control condition
showed that the genes whose transcripts had a circadian maximum
during the biological night were significantly associated with pro-
cesses and functions related to gene expression, RNA metabolic
processes, cellular metabolic processes, and nucleic acid binding
(Fig. 4C). In contrast, the circadian genes whose transcripts
peaked during the biological day were associated with responses
to hormones and stress, inflammatory, immune and defense
responses, interleukin and cytokine activity, and protein di-
merization (Fig. 4C). Gene Ontology analysis on genes from the
individual clusters described above showed that genes associated
with RNA processing and gene expression were present in cluster
2 with an average expression peak at 0130 hours; those genes
associated with responses to stress, hormone, external stimuli,
immune and inflammatory responses, cytokine activity, and NF-
kB signaling were present in clusters 4 and 5, with average peak
expression times of 1600 and 1906 hours, respectively.
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enriched (number 10 of the top 10). P values are the
Benjamini and Hochberg (18) -corrected P values as
calculated by WebGestalt (62).

In the sleep-restriction condition, the distribution of phases was
also bimodal (Fig. 4B) (see Fig. S2B for the corresponding clusters
and heatmap). In this condition, there were 905 genes (4.2% of all
genes, 61.1% of circadian genes) in-phase and 281 genes (1.3% of
all genes, 19.0% of circadian genes) in antiphase with melatonin.
Therefore, the reduction in the number of genes whose transcripts
were classified as having a circadian expression profile after sleep
restriction is mainly a result of the elimination from the list of
genes whose transcripts peaked during the biological day, which
have more than halved. Gene enrichment and functional anno-
tation analyses were applied to the circadian gene clusters fol-
lowing sleep restriction. The distribution of biological processes
within the clusters was broadly similar to the control condition
(see above), but the average expression peak time of cluster 2
(processes associated with regulation of gene expression) had
moved later to 0250 hours, and the average peaks for clusters 4
and 5 (immune, inflammatory, stress responses, and so forth) had
moved earlier in the day to 1430 and 1710 hours, respectively.
Thus, a further effect of sleep restriction was to narrow the win-
dow of circadian gene expression and to increase the temporal
separation of clusters 4 and 5, which can also be seen in the dis-
tribution of biological day genes in Fig. 4B.

Because the analyses of the melatonin rhythm suggested that
sleep restriction could alter the waveform of circadian variables,
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we analyzed the circadian profiles of transcripts in several ways.
We used a circular SOM to generate a clustered heatmap for
transcripts that were circadian in the control and/or the sleep-
restriction condition (Fig. 54), and for transcripts that were
circadian in both conditions (Fig. S34). We also plotted the
time course of several transcripts separately for the two con-
ditions (Fig. 5B). It can be seen from the heatmap that after
sleep restriction, the nocturnal time window of peak expression
has narrowed for the genes whose transcripts peaked during the
night, whereas the nocturnal time window of minimal expression
has narrowed for the genes that peaked during the day. This
finding was quantified by comparing the width at mid-amplitude
for the crest of the night-active genes (P < 2.2 x 107'°) and the
width at mid-amplitude for the trough of the day-active genes,
(P < 1.4 x 107°) (Fig. 5C). This effect remained significant when
the width at mid-amplitude change induced by sleep restriction
was compared for those time-series that were identified as cir-
cadian in both conditions (Fig. S3B).

Individual transcript expression profiles suggested a reduction

in amplitude following sleep restriction (Fig. 5B). Analysis of the
amplitude of all individual time-series that were classified as
circadian in the control and/or sleep-restriction conditions revealed
that sleep restriction led to a significant reduction of the circadian
amplitude (P < 2.2 x 107'%) compared with the control condition
(Fig. 5D). This effect remained significant when the amplitude was
compared for those time-series that were identified as circadian in
both conditions (Fig. S3C).
Response of gene expression to time awake (acute total sleep deprivation).
To identify transcripts that responded to total sleep deprivation
we calculated a cumulative trend for each individual time-series
and identified probes with statistically significant upward or
downward trends during the constant routine after both the
control and sleep-restriction conditions. The prevalent time-
awake—dependent genes are defined as those targeted by probes
whose transcript levels showed a significant trend in response to
total acute sleep deprivation in a number of participants that
resulted in a FDR of <5%.

The analysis identified 122 time-awake—dependent genes dur-
ing the total sleep deprivation following the control condition
(Fig. 3B and Dataset S2). Following the sleep-restriction condi-
tion, there was a sevenfold increase in the number of prevalent
time-awake—dependent genes (856 genes; 3.8%) compared with
the control condition (122 genes; 0.5%) (P < 2.2 x 107'%). In
both conditions, the number of genes with a downward trend ex-
ceeded the number of genes with an upward trend (in the control,
46 genes up and 76 genes down, and in sleep restriction, 368 up and
488 down) (Fig. 3 B and C, and Dataset S2) (see SI Methods for
an explanation of how gene numbers were derived).

Gene-enrichment and functional annotation analyses were car-
ried out on the genes whose transcripts responded to time-awake
with an increased or decreased expression (i.e., upward and
downward trends were analyzed separately) in the control condi-
tion. For upwardly regulated transcripts, these included processes
associated with phagocytosis (P = 4.5 x 107, and for the down-
ward transcripts significant associations were with protein trimeri-
zation (P = 1.4 x 107%), regulation of striated muscle differentiation
(P = 2.0 x 107*), histone H3 acetylation (P = 1.5 x 1072), nucleic
acid metabolism (P = 2.3 x 107%), and H3 histone acetyltransferase
complex (P = 5.0 x 107*). Processes and functions associated with
genes whose expression increased after sleep restriction included
IL-6 signaling (P = 0.044), phagocytosis (P = 0.044), inflammatory
response (P = 0.044), response to wounding (P = 0.044), and re-
sponse to external stimuli (P = 0.044). Processes and functions
associated with genes whose expression decreased during total
sleep deprivation after sleep restriction included RNA }S)rocessing
(P = 0.0023), chromosome organization (P = 8.3 x 107°), protein
transport (P = 0.0021), gene expression (P = 0.0017), nucleic acid
metabolism (P = 2.0 x 107*), cellular macromolecule metabolism
(P = 6.0 x 107™), protein binding (P = 0.0051), and nucleic acid
binding (P = 0.0069). We also conducted an enrichment analysis
for those 361 genes and 444 genes that did not respond to time-
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awake in the control condition but became responsive after sleep
restriction (Fig. 3 B and C). Processes and functions associated
with these genes are very similar to those identified above (Fig. S4)
and this is not unexpected, given that only 9 and 44 genes had
an upward or downward expression trend, respectively, in both
conditions.

We next applied a circular SOM to describe the time course of
the transcripts that had a significant upward or downward trend
following the control (Fig. 64) or sleep-restriction conditions in
more detail (Fig. S2D). The five clusters differ with respect to the
overall trend (upward: clusters 1 and 2; downward: clusters 3, 4,
and 5) and the extent of the rhythmic component (e.g., cluster 1
vs. 2). Genes with an upward expression trend following the
control condition included PROKR2, NTSRI1, PTEN, and ABCAI,
those with a downward expression trend included LSGI and
NCORI (Fig. S54). Genes with an upward trend following
sleep restriction included IL6, ILIRN, OPN4, STAT3, PER?2,
UCP3,ABCAI, KCNV2, CEACAM3, CEACAM4, CEACAM?20,
SLC2A43, SLC2A5, KSR1, and IMPDH]I. Genes with a down-
ward trend following sleep restriction included RORA, CRY2,
CREM, CAMK2D, ENOX2, ZNF696, LAXI, POPI1, PPMIK,
NCORI (Fig. S5A4), SETD2 (Fig. S5B), MLL (Fig. S5C), and
MYST4 (Fig. S5D). (See Fig. S2D for heatmap and clusters).

To examine the change in the time course of gene expression
after sleep restriction in more detail, we performed an analysis
on genes whose transcripts became responsive to acute total
sleep deprivation (i.e., those that had an upward or downward
profile only after sleep restriction). The time course of the
transcripts associated with these genes following sleep restriction
was compared with their time course in the control condition
(Fig. 6B). The heatmap shows clusters of downward transcripts
that after sleep restriction had higher expression at the beginning
of the sleep-deprivation period and lower expression at the end
of the sleep-deprivation period, compared with their equivalent
profiles in the control condition. The opposite was true for
transcripts with upward expression profiles. This result is con-
firmed when averaged median profiles for the upward and
downward clusters were compared for the two conditions (Fig.
6C). Statistical evaluation of this phenomenon by comparing
trend angles for the upward and downward probes between the
conditions revealed significant reductions in the cumulative
trend angle for downward genes (P < 2.2 x 107'%), and significant
increases for upward genes (P < 2.2 x 107'%) (Fig. 6D). A similar
conclusion was reached when this analysis was applied to the
transcripts which had a significant upward or downward trend in
the control and sleep restriction condition (Fig. S6).

Discussion

This study has demonstrated that insufficient sleep to an extent
frequently or chronically experienced by many individuals in in-
dustrialized societies altered the temporal organization of the
human blood transcriptome, including its circadian regulation
and the response to acute total sleep loss. The biological pro-
cesses encoded by the genes most affected by sleep restriction
included chromatin organization and modification, gene expression,
inflammatory and stress responses, as well as cellular macromole-
cule metabolism, and oxidative stress responses (see Fig. S7 for
a summary of all results).

Relevance of the Protocol. The sleep-restriction protocol led to
a reduction of polysomnographically assessed total sleep time
(5.7 h hours per 24 h), which is insufficient for this age group, as
evident from the increase in sleepiness and lapses of attention,
compared with the well-rested control condition (19). Insufficient
sleep of this magnitude and duration may also lead to changes in
many metabolic and endocrine variables (20) and may be relevant
to many people living in industrialized societies worldwide. For
example, according to the Centers for Disease Control and Pre-
vention, 30% of civilian adults in the United States (~40.6 million
workers) report an average sleep duration of 6 h or less (21). The
current protocol was designed to assess effects of sleep restriction
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Fig. 5. Circadian variations in the transcriptome following control and sleep
restriction. Genes with a prevalent circadian variation during the constant
routine/total sleep deprivation after control and/or sleep restriction (n = 2,859
probes that target 2,510 genes). (A) Heatmap rows correspond to the median
of the melatonin-aligned probe values across all participants per sleep condi-
tion. Rows are clustered based on a circular SOM. Color codes on the left side of
the heat map identify the clusters. Relative clock times and melatonin profiles
are average values across all participants per sleep condition. Genes related to
circadian rhythmicity and sleep (according to Gene Ontology) are indicated in
the heatmap (gene colors indicate cluster location). (B) Examples of genes with
a significant difference in circadian amplitude: GHRL (A_23_P40956) (pair-wise
comparison across participants: P = 0.0040), /DS (A_24_P285032) (P = 0.0042),
AVIL (A_23_P390157) (P=0.0109), and CEACAM3 (A_23_P358244) (P =0.0004).
Log, expression values are least-squares means + SE (Procedure Mixed, SAS).
(C) Comparison of width at mid-amplitude for the night hours (trough) in
the melatonin-aligned median profiles of day-active probes [n = 1,356 paired
values, estimated mean of the difference —0.199 h (95% Cl-0.288, —0.109), P <
1.416 x 107>; density of the paired differences and 95% Cl are shown in or-
ange] and comparison of width at mid-amplitude for the night hours (crest) in
the night-active probes [n = 1,469 paired values, estimated mean of the dif-
ference —0.572 h (95% Cl —0.656, —0.489), P < 2.2 x 107"%; density of the paired
differences and 95% Cl are shown in blue]. (D) Density plot of circadian ampli-
tudes per participant for the prevalent circadian genes in control and sleep re-
striction [control n = 29,568 (black solid line) corresponding to 2,859 probes
circadian in an average of 10.34 participants; sleep restriction n = 24,354 (red solid
line) corresponding to 2,859 probes circadian in an average of 8.51 participants].
The estimated mean for the circadian amplitude is 0.313 in control (black broken
line) and 0.273 in sleep restriction (red broken line), 95% Cl of the difference
(-0.042, —0.037), P < 2.2 x 107'°,

6 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1217154110

on the temporal organization of the blood transcriptome, in-
dependent of the direct masking effects of longer light exposure
and more intense sleep, which are present during the imposition
of restricted sleep. To quantify effects of insufficient sleep on
the endogenous temporal organization of the transcriptome, we
assessed this during a period of sustained wakefulness and aligned
the transcriptome time series with the rhythm of plasma mela-
tonin. The melatonin rhythm provides an internal circadian-phase
reference point that is generally relevant because of the circadian
variation in a considerable proportion of the transcriptome, and
particularly relevant because sleep restriction has been reported
to shift circadian rhythms (22), as was also observed in this study.
Because the constant routine conditions involve a period of
sustained wakefulness, the protocol also allowed the assessment
of the effects of acute total sleep loss on the transcriptome, which
has been the focus of many rodent studies on the homeostatic
regulation of sleep (8). Importantly, our analyses of the tran-
scriptome revealed that the effects of sleep history, circadian
phase, and acute total sleep loss interact. For example, following
sufficient sleep, the expression of only 122 genes changed in re-
sponse to time awake, whereas after insufficient sleep, 856 genes
changed expression. In other words, one major effect of sleep
restriction is that it affects the impact of sustained wakefulness on
the transcriptome. Similarly, the data show that circadian phase
and amplitude are affected by sleep history. The fold-change
differences in gene expression that we report are relatively small.
Nevertheless, the within-subject, cross-over design of our protocol
and the consequent large number of arrays (>500 providing >2
million probe time series) and the robust and stringent data
quality control and statistical analyses (Methods) has allowed the
detection of highly significant differential gene expression.

Blood Transcriptome. We found changes in the whole-blood tran-
scriptome, some specifically related to leukocyte functions (e.g.,
an up-regulation of immune and inflammatory responses), and
others related to more general processes (e.g., down-regulation of
processes associated with chromatin modification, RNA processing,
and gene expression), or in genes thought to be specific to par-
ticular tissues (e.g., opsins). The changes in expression of genes
not typically implicated in leukocyte function are unlikely to be
statistical artifacts because we used robust statistical procedures,
correcting for multiplicity by generally accepted methods. These
changes are also unlikely to be related to low expression levels
because the quality-control procedures implemented safeguard
against this potential artifact (Methods). Leukocytes, which are
the only nucleated components of blood, are the main source of
RNA in our samples. Other sources may include erythrocytes
and platelets, and RNA from other tissues that have been shed
into circulating blood may also be present. A previous study has
shown that ~80% of the blood transcriptome was shared with
nine other tissues, including brain, heart, kidney, prostate, and
lung, leading the authors to propose that peripheral blood can
act as a “sentinel” for diagnosis or prognosis of conditions in
a range of tissues (12). It is known that peripheral blood cells
express genes normally associated with other tissue types, such as
neurotransmitter receptors and transporters, notably GABA
(23), but also opsins such as RHO, OPNILW, and OPN4 (Gene
Expression Omnibus database). Indeed, circulating levels of
RHO mRNA have been proposed as an assessment tool for di-
abetic retinopathy (24). In our study, GABA transporters, as well
as RHO, OPNILW, and OPN4 were also differentially expressed.
The presence of these neurotransmitter-related or opsin-related
transcripts in blood may not necessarily have functional con-
sequences within blood. However, their presence in the blood
transcriptome may inform on the effects of external manipula-
tion (including sleep deprivation) on the expression of genes in
central and peripheral organs (13), as well as the processes and
molecular functions associated with these genes.

Circadian Modulation of the Blood Transcriptome After Sufficient
Sleep. Our observation that after sufficient sleep under constant
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Fig. 6. Time-awake—dependent variations in the transcriptome. (A) Genes
with a prevalent time-awake-dependent variation during the constant rou-
tine/total sleep deprivation following the control condition (124 probes that
target 122 genes, FDR <5%). Medians of the melatonin-aligned probe values
across all participants in the control condition are clustered based on a circular
SOM. Cluster means are plotted as time-series and the number of genes per
cluster is indicated in parenthesis (genes belonging to multiple clusters are
counted in each cluster independently). Sampling times and melatonin profile
shown correspond to the average values across all participants in the control
condition. (B-D) Data are based on genes with a prevalent time-awake vari-
ation during the constant routine/total sleep deprivation after sleep restriction
and not significantly prevalent after control (363 probes that target 361 genes
with cumulative upward trend, and 470 probes that target 444 genes with
cumulative downward trend; see Fig. 3 Band C). (B) Heatmap rows correspond
to the median of the melatonin-aligned probe values across all participants per
sleep condition. Rows are clustered based on a circular SOM of the sleep-re-
striction profiles. Color codes to the left of the heat map identify the clusters.
Relative clock time and melatonin profile are the average values across all
participants per condition. Genes related to circadian rhythmicity and sleep
(according to Gene Ontology) are indicated in the heatmap (gene colors in-
dicate cluster location). (C) Smoothing spline (64) of the average of melatonin-
aligned median profiles (shown in B) of probes with an increasing trend and of
probes with a decreasing trend. (D) Density plot of cumulative trend angle
differences between sleep restriction and control. A total of 1,838 paired trend
angles (363 probes significant in an average of 5.06 participants) were used for
the comparison of upward trends, and a total of 2,454 paired trend angles (470
probes significant in an average of 5.22 participants) were used for the com-
parison of downward trends. For upward trend (orange), the estimated mean of
the differences is 20.1085° [95% Cl (19.3552, 20.8618), indicated by orange
broken lines; t test P < 2.2 x 10~ '®]. For downward trend (blue), the estimated
mean of the differences is —21.1062° [95% Cl (-21.7344, —20.4781), indicated by
blue broken lines; t test P < 2.2 x 107'9].

routine conditions, ~9% of genes expressed in peripheral blood
had a circadian expression profile is a unique demonstration that,
even in the absence of a 24-h sleep-wake, light-dark, and fasting-
feeding schedule, circadian rhythmicity is a major characteristic of
the temporal landscape of the blood transcriptome in humans.
This finding also agrees well with previous data for the prevalence
of circadian genes in other tissues (for review, see ref. 25). Cir-
cadian genes included the core clock genes (PERI, PER2,
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NRIDI, NR1D2, and ARNTL), as well as genes involved in me-
tabolism (e.g., SLC2A43, SLC2A14, PYGL, ABCAI) and the reg-
ulation of gene expression (e.g., TCEA3, ELP2, ELAVI, SNRPF,
HNRNPU). Functional annotation analyses of the rhythmic genes
associated with different temporal profiles revealed a marked
temporal segmentation of biological processes and functions.

Genes whose transcripts peaked during the biological night
(~58%) included most of the canonical clock genes, and those
whose transcripts peaked during the biological day (~32%) in-
cluded the antiphase clock gene ARNTL and PROK2. All three
PER genes were rhythmic, confirming previous clock-gene ex-
pression data from human blood cells and hair follicles (26, 27), and
were confined to a small cluster with a peak close to the melatonin
offset. Thus, the peripheral blood circadian clock, assessed in the
absence of a sleep-wake cycle, appears to operate in concordance
with what is known for other tissues. Biological processes and
molecular functions associated with biological night genes were
predominantly related to nucleic acid binding, gene expression,
RNA metabolic processes, RNA binding, ribosome biogenesis, and
cellular macromolecular metabolism, which peaked at around
0130 hours. Biological processes, such as immune, defense, stress and
inflammatory responses, cytokine receptor activity, IL-1 receptor
activity, and NF-kB signaling were more prominent during the
biological day, which generally agrees with previous animal
studies if we take into account that most animal studies concerned
nocturnal rodents (for review, see ref. 8). This biphasic organi-
zation of gene expression and associated processes also agrees
well with recent data on the temporal, circadian organization, and
epigenetic regulation of gene expression (28, 29). One particular
characteristic of our protocol is that it demonstrates that this
temporal order in the transcriptome persists in the absence of
sleep. The large number of transcripts reported here as showing
circadian modulation may make it possible to construct circadian
phase markers from the blood transcriptome, similar to that
suggested for the blood metabolome (30).

Effects of Insufficient Sleep on the Circadian Modulation of the Blood
Transcriptome. Comparison of the circadian organization of the
blood transcriptome after 1 wk of insufficient or sufficient sleep
revealed both stability and change. Stable aspects of the circa-
dian organization included the rhythmic oscillation of 793 genes,
which included some of the core clock genes and genes related to
specific leukocyte functions. In general, the phase of these
oscillations was not changed dramatically, although some subtle
changes were observed. More importantly, changes induced by
sleep restriction included the marked reduction in the number of
transcripts and associated genes that were classified as having
a circadian expression profile. In particular, genes whose tran-
scripts peaked during the biological day during the control
condition were no longer circadian after sleep restriction. This
implies that even in the absence of a sleep-wake cycle, sleep
restriction leads to a change in the control of functions and
processes such as immune function, response to inflam-
mation and stress. Of particular interest is that sleep restriction
also led to a set of genes that became classified as circadian.
These genes were associated with functions and processes, such
as alanyl-tRNA aminoacylation, alanine-tRNA ligase activity,
and translational elongation. Previously, a study in mice reported
that mistimed sleep (6 h of sleep deprivation during the light
phase) induced rhythmic expression of a large set of genes (11).
Whereas in that study the rhythmicity could be related to an
acute response to activity in the sleep-deprivation condition, this
is unlikely to be the case in the present study because the tran-
scriptome was assessed under constant routine conditions. In the
present study, the effects of sleep restriction were, however, not
limited to changes in the number of genes classified as circadian
or noncircadian. Within the set of genes classified as circadian,
sleep restriction also led to a reduction of circadian amplitude
and a reduction in the width of the period of expression.
Whereas the former finding may be interpreted as a weakening
of circadian organization, the effects on the waveform of ex-
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pression could be interpreted as a response to the altered du-
ration of the night and associated dark period during sleep re-
striction. Changes in photoperiod are well known to alter
circadian organization and some of the effects of sleep re-
striction in humans have been interpreted within this framework
(31). The observed reduction in amplitude and changes in
waveform are unlikely to reflect interindividual differences in
changes of circadian phase after sleep restriction because the
time-series were aligned with the melatonin rhythm.

Effects of Insufficient Sleep on the Changes in the Blood Transcriptome
in Response to Acute Total Sleep Deprivation. The observation that
in the control condition only very few genes were affected by
acute total sleep loss was unexpected in view of the animal data
for acute total sleep loss (8-10, 32, 33). However, it should be
noted that there are no comparable blood transcriptome data
from animals, nor are there brain or liver data from humans.
Thus, it is possible that this difference is related to the different
tissues sampled. It is also possible that the effects of sleep dep-
rivation on gene expression are larger in other tissues, or that
a longer period of sleep deprivation is required to see the same
magnitude of effect in humans. In addition, more genes were up-
regulated than down-regulated during acute sleep loss, although
less so after sleep restriction compared with the control condi-
tion. This result is also different to the findings of previous an-
imal studies and may also be related to differences in the tissues
or the sleep deprivation protocols used, or because of limitations
in the comparison of diurnal humans with nocturnal animals.

After sufficient sleep, acute total sleep deprivation led to
changes in gene expression that were significantly associated
with up-regulated processes related to phagocytosis, and down-
regulated processes related to protein trimerization, histone H3
acetylation, and striated muscle development. The large (sev-
enfold) increase in the number of genes responding to total
sleep deprivation after sleep restriction was related to biological
processes associated with “upward trend” genes, such as IL-6
signaling, inflammatory and defense responses, and responses to
external stimuli and wounding; “downward trend” genes were
associated with chromosome organization, RNA processing,
gene expression, nucleic acid metabolism, macromolecule me-
tabolism, and RNA, nucleotide, and protein binding. The down-
regulation with time-awake following sleep restriction of many
genes associated with the regulation of gene transcription and
translation [e.g., HISTIH4J, HISTIH4F, HIST2H2AC, NCORI
(Fig. S54), SETD2 (Fig. S5B) (cf. ref. 34), MLL (Fig. S5C) (cf.
refs. 35 and 36), SMARCE]I, and MYST4 (Fig. S5D)] is of par-
ticular interest in view of the temporal organization that has
been described for these processes (28, 29), but also underlines
the significant impact of sleep restriction.

Up-regulation with time-awake after sleep restriction of genes
associated with processes such as stress, immune, and in-
flammatory responses, agrees with what has been observed pre-
viously for sleep-deprivation studies designed to assess the
correlates of sleep homeostasis. Animal studies have demon-
strated the existence of reliable brain-specific markers of sleep
homeostasis, such as Homerla (9, 37-40), but also extremely
robust cytokine markers with known functional roles, such as IL-
1 and TNF, which show increased levels in response to sleep loss
(41, 42). As expected, expression of HOMERI in blood did not
show a significant effect of sleep restriction and remained un-
changed with time awake in both conditions of our study of the
blood transcriptome. However, during sleep deprivation after
sleep restriction we did observe increased expression of /L6 and
ILIRN together with up-regulation of PER2 and the inflammatory
response genes NFKBID and STAT3.

Our observation that /L6, STAT3, and PER2 were up-regulated
in response to total sleep deprivation after sleep restriction is in
accordance with total sleep deprivation studies that have impli-
cated these genes in sleep homeostasis (33, 43). The fact that
these genes were not detected as being up-regulated in the
control condition underlines how 1 wk of restricted sleep has
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exacerbated the effects of acute total sleep deprivation, which is
a well-documented phenomenon for cognitive performance meas-
ures (44). We also observed up-regulation of three members of the
CEACAM gene family, which code for Ig-related glycoproteins.
Two members of this family were significantly up-regulated after
60 h of prolonged wakefulness in a recent human study (22).

Interaction of Circadian Regulation, the Response to Acute Total
Sleep Loss, and the Effects of 1 wk of Insufficient Sleep. The tran-
scriptome, assessed in blood, liver, or brain, is highly dynamic. Our
data demonstrate that the history of sleep and wakefulness affects
these dynamics in such a manner that the deduced circadian
components and responses to acute sleep loss are altered. This
finding implies that when only a single sample is measured, the
effects of sleep restriction may depend on where in the circadian
cycle these effects are assessed, which is why we assessed the effects
of sleep restriction by both analyzing the time course of the tran-
scriptome in the two conditions, and also by assessing the overall
main effects through ANOVA. Because all of these analyses make
use of the same data, the various results should be interrelated. For
example, the processes identified as down-regulated by ANOVA
are remarkably similar to the processes associated with the genes
whose transcripts exhibited a downward trend during acute total
sleep deprivation following sleep restriction. Among the most
prominent of these processes were chromosome organization, gene
expression, nucleic acid metabolism, and cellular macromolecule
metabolism. Therefore, the conclusion that these processes are
affected by insufficient sleep is justified. The interpretation of the
reduction in the number of circadian day active genes may be more
complex. The biological processes and functions associated with
the day genes that were no longer circadian after sleep restriction
included many leukocyte-specific processes, such as immune and
inflammatory responses. These were the same processes that were
associated with genes whose expression showed an upward trend
during time-awake following sleep restriction. Our interpretation
of this observation is that circadian rhythmicity was lost because of
an increased response to time-awake, although the mechanisms
underlying this enhanced response remain unclear. Overall, the
data show robust effects of sleep restriction on the human blood
transcriptome that are comparable to animal studies. The overlap
between the transcripts affected by 1 wk of sleep restriction in our
bloodomics study and the transcripts identified as differentially
expressed in the mouse liver after 2 wk of sleep restriction (11) was
344 transcripts (46%). Of particular interest, there was overlap with
probes targeting circadian genes (PER2, PER3, CRY2, RORA,
RHO) and genes involved in the response to oxidative stress
(PRDX2 and PRDX5). The latter two are of specific interest be-
cause they form part of the oxidative stress response, and perox-
iredoxins have also been reported to be a universal marker of
transcription/translation-free circadian rhythmicity (21). This de-
monstrates that the effects of sleep restriction translate across
species and tissues/organs.

These data are important for understanding the mechanisms of
how sleep deprivation can lead to circadian disruption and mis-
alignment, and consequent negative effects on health and well-be-
ing in general, and with respect to immune function and metabolism
in particular. Interactions between sleep restriction and circadian
disruption have previously been reported to adversely affect met-
abolic processes (45).

Sleep Restriction and Health. Our data suggest several pathways by
which sleep restriction and circadian rhythmicity may be linked
to negative health outcomes associated with insufficient sleep.
The baseline circadian data underscore the pronounced rhyth-
mic variation in classic circadian genes, (e.g., PERI, PER?2,
PER3, ARNTL, CSNKIE), and genes implicated in metabolism
(e.g., RORA, NRIDI, NRID2, GHRL) and sleep homeostasis
(e.g., PER2) (for review, see refs. 16 and 46), but also in immune
function (e.g., IL6, ILIRN, STAT3, TNFSF4) (47). Circadian
organization of the transcriptome and physiology are often im-
plicated in health and disease (30). Our data show that this
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circadian organization is altered and this could be one general
pathway by which sleep restriction leads to health problems. In
addition, our data show that specific processes are down-regu-
lated or up-regulated by sleep restriction. These processes may
affect the temporal organization of gene expression through
chromatin modification and remodeling (28), or may simply af-
fect the overall level of specific processes (e.g., immune function)
and thereby affect health. In addition, the intensified response to
acute sleep deprivation following sleep restriction may imply that
insufficient sleep increases the response to challenges and
stressors, and in this way negatively affects health. Finally, sleep
restriction led to changes in the expression of a number of genes
that may be linked to specific health outcomes. For example, the
observed changes in NRIDI and NR1D?2 are of interest in view of
recent animal data, which have shown that Nridl and Nrld2
liver-specific double-knockout mice showed disruption to over
90% of the liver circadian transcriptome and increased circu-
lating levels of glucose and triglycerides (48).

The data emphasize the temporal organization of the human
blood transcriptome and identify processes primarily active
during the biological day or the biological night. Overall, the
results show that sleep debt effects can be readily studied in the
blood transcriptome, and imply several mechanisms for its effect
on health. The data presented in this study will form an impor-
tant resource for research on sleep and chronobiology and their
interface with health outcomes of insufficient sleep.

Methods

Ethics and Participants. The protocol received a favorable opinion from the
University of Surrey Ethics Committee and was approved by the Institutional
Review Board of the Air Force Research Laboratory. The study was conducted
in accordance with the principles of the Declaration of Helsinki. All partic-
ipants provided written informed consent after receiving a detailed expla-
nation of the aims and procedures of the study and before any procedures
described in the study. Individuals were recruited as reported in ref. 49.
Data from 26 participants (14 males; mean + SD of age = 27.5 + 4.3 y) are
presented in this report. The subjects were in general good health as
assessed by medical history, physical examination, and standard bio-
chemistry and hematology; they did not suffer from sleep disorders as
assessed by self-report questionnaires [Pittsburgh Sleep Quality Index <5
(50)] and a clinical polysomnographic recording. The participating indi-
viduals were predominantly white (19 of 26) and homozygous for the PER3
VNTR (rs57875989), with 12 participants carrying the shorter allele. Their
habitual sleep duration was 8.2 + 1.7 h (SD).

Study Protocol. Participants were resident in the clinical research center of the
University of Surrey for 12 d on two occasions in a balanced, cross-over design.
The interval between the two legs of the study was at least 10 d. Following
two baseline nights, participants were scheduled for a sleep-restriction
condition (6-h sleep opportunity per night for seven consecutive nights) or
a control condition (10-h sleep opportunity for seven consecutive nights),
which allowed sufficient sleep for this age group to maintain alertness and
performance. Both conditions were followed immediately by a 39- to 41-h
constant routine (17), followed by 12-h recovery sleep episode. The midpoint
of the 10- and 6-h sleep opportunities coincided with the midpoint of the
participant’s habitual sleep-wake schedule. Sleep was recorded poly-
somnographically during all sleep episodes. Waking performance was
assessed five times per wake episode during the sleep-restriction and
control segments and every 2 h during the constant routine, using a bat-
tery of tests. Assessments of sleepiness were based on the well-validated
and sensitive Karolinska Sleepiness Scale (51), which is a 9-point Likert scale
(1 = very alert to 9 = very sleepy, great effort to keep awake). We also
report lapses of attention (reaction time > 500 ms) on the psychomotor
vigilance task, which are also among the most sensitive indicators of effects
of sleep loss (52, 53). Please see S/ Methods for a description of the constant
routine protocol.

Melatonin Assay and Assessment of Circadian Phase. The onset of melatonin
secretion is considered a reliable marker of circadian phase (54) and was
determined for each participant in each condition. Each RNA sample was
assigned a circadian phase (SI Methods).

Moller-Levet et al.

RNA Extraction from Whole Blood, Labeling, and Microarray Hybridization. See
SI Methods.

Microarray Statistical Analysis. For details of the quality control and pre-
processing of the microarray data, see the S/ Methods.

ANOVA. For the primary analyses aimed at identifying effects of sleep re-
striction, we used a mixed-model ANOVA approach as implemented in
Procedure Mixed in SAS v9.1. To adjust for multiplicity, we used the Benjamini
and Hochberg approach (18). For more details of the ANOVA, see S| Methods.
Time-series analyses. To characterize changes over time, we subjected the time-
series to analyses aimed at identifying rising or falling trends with time awake
or rhythmic components with a 24-h period. We defined a time-series X, =
{X1,X2,X3,.. X n as the set of n, time-ordered expressions levels detected by
probe p, in participant s, in sleep condition c. A total of 42,119 probes, 26
participants and two sleep conditions, generating over 2 million different
time-series, were analyzed. We characterized the time-series based on their
time-awake-dependent and circadian properties (Fig. S8).

Identification of time-awake—dependent transcripts. A derivative-based anal-
ysis was used to calculate a time-awake cumulative trend for each time-series.
Briefly, the cumulative upward and downward trends (CuT and CdT, re-
spectively) were calculated as the sum of weighted median-normalized slopes
of resampled and smoothed z-scored series. Time-series with a cumulative
trend angle [arctan(CuT/CdT)] P value of less than 0.05 and a coefficient of
variation in the top 90th percentile were classified as being time-awake-de-
pendent. Pvalues were based on random resampling of original data, which is
a common approach in this area (55). Genes targeted by probes identified as
time-awake—-dependent in a minimum number of participants (n) were de-
fined as having a prevalent time-awake-dependent expression in the asso-
ciated sleep condition. We determined n, such that the FDR was 5% or less, by
comparing the observed distribution (number of participants in which
a probe is identified as time-awake-dependent) to the distribution obtained
when time-awake-dependent probes were randomly assigned to partic-
ipants, but keeping the total number of time-awake-dependent probes per
participant constant.

Identification of circadian transcripts. We defined genes whose expression
levels have a circadian rhythmicity as those that showed one full oscillation
every ~24 h. To identify the set of genes with circadian profiles, we followed
a time-domain analysis similar to ref. 56, which fitted a sinusoidal function
to the data and set a threshold to the R? value of the fit. Comparable to
other pattern-matching time-series methods (57-61), this approach allows
the characterization of each time-series based on their phase, amplitude,
and period. Although frequency-based approaches have proved to be ef-
fective [e.g., GeneTS (62) or ARSER (63)], these are better suited for a larger
number of sampling time points or higher sampling frequencies. See S/
Methods for further details.

Comparison of Width at Midcircadian Amplitude. The sine function used for the
identification of circadian profiles of gene expression (described above) was
fitted to the smoothing spline (64) of the melatonin-aligned median profiles.
The resulting sine wave was zero-centered and de-trended based on the
linear component of the fit. The width at the midcircadian amplitude of the
circadian wave during the biological night was then calculated.

Clustering Analysis. Unsupervised clustering analysis was performed on the
prevalent circadian and prevalent time-awake-dependent genes to identify
main profile patterns and the biological processes with which they are as-
sociated. The median of the melatonin-aligned probe values across all par-
ticipants was entered in the clustering analysis. The coexpression coefficient-
based circular SOM (65) was used to partition the data into distinct groups
according to their temporal properties.

Gene-Enrichment and Functional Annotation Analyses. See S/ Methods for
details of the methods used to perform these analyses.
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