

Sound propagation from wind turbines under various weather conditions

Conny Larsson Olof Öhlund

- Human response to wind turbine noise
- Sound propagation effects
- Results
 - Long time measurements
 - Comparison with SEPA sound propagation model
 - Amplitude modulation
- Conclusions

Human response to wind turbine noise

Pedersen, Persson Waye 2004

Sound propagation effects

Sound propagation effects

Measurement sites

Site Ryningsnäs

2 WTs

~ 400 m

Site Dragaliden
12 WTs

~ 1200 m

Results – Long time measurements

Results – Long time measurements

Results – Long time measurements

Comparison with SEPA model

Comparison with SEPA model

Amplitude modulation (AM)

Results – AM during 1 year

Propagation distance ~ 1200 m

AM more common during specific meteorological conditions!

Results – AM during 1 year

AM more common during specific meteorological conditions

Conclusions

- Weather conditions can give a 15 dBA variability in an expected WT sound level
- SEPA sound propagation model underestimates the "worst case" SPL with some dB.
- AM may increase annoyance and is more common during evenings and nights
 - Detected 20 % 30 % of total time WTs operating depending on distance