

A simplified method for determination of "amplitude modulation" of audible and inaudible wind turbine noise

Steven Cooper

Cape Bridgewater Windfarm Study – Modulation of A-weighted level for different power settings

TURBINE 13 LOCATION 7 A-WEIGHTED OVERALL VS. TIME

Simultaneous Inside and Outside Measurements – Leonards Hill Wind Farm (Victoria, Australia)

Courtesy of L Huson & Associates

FFT (0-50 Hz, 400 lines)

CBW Turbine 13 at 50% power

FFT vs Time (0-50 Hz, 400 lines)

centre downwind (Real)

1/3 Octave Bands (A-weighted)

Manual Detection of AM

- Some methods have used A-weighted levels or peaks in the A-weighted 1/3
 octave band spectra to then be subject to assessment in 10 second blocks
 of time for which the median of the maximum and minimum over a 10
 minute sample is used to determine the AM
- Other proposals have nominated the use of an FFT analysis of the blade pass frequency but without due consideration of the BT = 1 issue
- Based upon a modified Den Brook Methodology the use of 1/3 octave as described above have been used for comparison purposes
- On the basis of an A-weighted spectrum, then the criticism of noncompliance with BT = 1 is reduced because of the attenuation of the Aweighting filter

25 Hz 1/3 octave band time trace and movie plot of turbine

25 Hz 1/3 Octave Band Time Splice

CPB vs. Time (1/3 octave bands)

Modulation Indices derived from alternative method (A-weighted spectra)

Modulation Indices derived from alternative method (linear spectra)

Comparison of Modified Den Brook Method and Simplified Statistical Method

