Turbid wakes associated with offshore wind turbines observed with Landsat 8

Quinten Vanhellemont *, Kevin Ruddick

Royal Belgian Institute for Natural Sciences (RBINS), Operational Directorate Natural Environment, 100 Gallelelle, 1200 Brussels, Belgium

A R T I C L E I N F O

Article history:
Received 14 November 2013
Received in revised form 17 January 2014
Accepted 18 January 2014
Available online 25 February 2014

Keywords:
Offshore wind farms
Turbid wakes
Suspended particulate matter
Landsat-8
Sensor noise
Spatial resolution

A B S T R A C T

In the last decade, the number of offshore wind farms has increased rapidly. Offshore wind farms are typically constructed in near-shore, shallow waters. These waters can be highly productive or provide nursery grounds for fish. EU legislation requires assessment of the environmental impact of the wind farms. The effects on hard and soft substrate fauna, seabirds and marine mammals are most frequently considered. Here we present Landsat-8 imagery that reveals the impact of offshore wind farms on suspended sediments. Turbid wakes of individual turbines are observed that are aligned with tidal currents. They are 30–150 m wide, and several km in length. The environmental impact of these wakes and the source of the suspended material are still unclear, but the wake size warrants further study. The underwater light field will be affected by increased suspended sediments and the turbid wakes could significantly impact sediment transport and downstream sedimentation. The question of whether such features can be detected by other remote sensors is addressed by a theoretical analysis of the signal/noise specification for the Operational Land Imager (OLI), the Enhanced Thematic Mapper Plus (ETM+), the Advanced Very High Resolution Radiometer (AVHRR/3), the Moderate-Resolution Imaging Spectroradiometer (MODIS), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Flexible Combined Imager (FCI) and the Multispectral Instrument (MSI) and by a demonstration of the impact of processing OLI data for different spatial resolutions.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

The first offshore wind farm was opened by Denmark in 1991, and consisted of 11 turbines with a combined capacity just under 5 MW (EWEA, 2011). For the next ten years, the construction of offshore wind farms was sporadic and limited to small-scale projects. After 2001, the installed capacity in Europe increased rapidly and by the end of 2012, 55 offshore wind farms were operational in Europe, with more than 1600 turbines and a total capacity just less than 5 GW, or 90% of the world total (EWEA, 2013). The United Kingdom had a 59% share in the European capacity, or over half of the world total, provided by 870 turbines on 20 farms (EWEA, 2013). This includes the two largest operational farms in the world: the London Array (630 MW) and the Greater Gabbard (504 MW). Both are located in the southern North Sea (SNS), as is in fact more than 40% of the world’s offshore wind farm capacity: the combined nameplate capacity of seven farms in Belgian and UK waters is almost 2.2 GW (Table 1). There are currently five wind farms in and around the Thames estuary, two of which will be studied in more detail in this paper: the London Array and Thanet. Both have a large number of turbines supported by steel monopiles 4–7 m in diameter, piled up to 40 m in the seafloor (LORC, see reference in Table 1). In the EU, offshore wind farm projects are subject to the directives on Strategic Environmental Assessment (SEA, 2001/42/EC) and Environmental Impact Assessment (EIA, 85/337/EEC and amendments). Environmental surveying carried out before, during, and after construction allows for mitigation of adverse effects of wind farms.

Mapping of surface Suspended Particulate Matter concentration (SPM), also called Total Suspended Matter (TSM), has been routinely made using data from dedicated wide-swath ocean color instruments such as Orbview-2/SeaWiFS, Aqua/MODIS and ENVISAT/MERIS (e.g. Gohin, 2011; Nechad, Ruddick, & Park, 2010; Ouillon et al., 2008; Van der Woerd & Pasterkamp, 2004). These instruments offer a good compromise between revisit time (approx. daily at 50°N) and spatial resolution (ranging between 0.25 and 4 km). Marine reflectance in a single red channel can be used to reliably retrieve a wide range of SPM concentrations in the SNS (Nechad, Alvera-Azcaráte, Ruddick, & Greenwood, 2011; Vanhellemont, Greenwood & Ruddick, 2013). While few sensors are designed for ocean color, other satellite-borne passive optical instruments with a red and near-infrared channel have also been used for SPM mapping. Generally they have a lower quality than e.g. MODIS and MERIS, due to their lower signal-to-noise ratio, but are used when a higher spatial (e.g. Doxaran, Froidefon, Lavender, & Castaing, 2002; Mertes, Smith, & Adams, 1993) or temporal (Neukermans et al., 2009) resolution is required. Even before the ocean color era, passive imagers were used for turbidity mapping (e.g. Amos & Alföldi, 1979; Rouse &
The suitability of the Operational Land Imager on Landsat 8 (L8/OLI) for coastal zone monitoring has been demonstrated using simulated data (Gerace, Schott, & Nevins, 2013; Pahlevan & Schott, 2013).

On imagery with sufficient spatial resolution, large vessels and offshore constructions, such as wind turbines, can be easily distinguished (for example in Fig. 1), as they are highly reflective structures on a dark background (water). In the present study, imagery from Landsat 8 also reveals significant modification of near-surface suspended sediment concentration in the form of turbid wakes extending up to several km downstream of turbines installed offshore of the Thames estuary.

2. Methods

2.1. Study area

The southern North Sea (SNS) is a shallow sea (< 50 m) with a sharp gradient of suspended particulate matter concentrations (SPM) from > 100 g m\(^{-3}\) in the near-shore waters to < 0.5 g m\(^{-3}\) offshore. Tidal
currents are often >1 m s⁻¹ (United Kingdom Hydrographic Office, 1985, 1995). SPM patterns observed at the water surface are closely linked to bathymetry (Fig. 2) because of resuspension of seafloor sediments by semidiurnal tides and by winds. In turbid waters SPM dominates the attenuation of light (Devlin et al., 2008) and thus has a major impact on primary production by phytoplankton. For example, even in the eutrophic Colne estuary (N–W corner of Fig. 1), phytoplankton is light limited most of the year because of the high turbidity (Kocum, Underwood, & Nedwell, 2002). Water turbidity greatly impacts the visibility of harbor seals (Weiflen, Möller, Mauck, & Dehnhardt, 2006), and pursuit-diving birds (Strod, Arad, Izhaki, & Katzir, 2004). In general, sh is reduced in turbid waters (Abrahams & Kattenfeld, 1997; Maes, Taillieu, Van Damme, Cottenie, & Utne-Palm, 2002). SPM mapping is also of interest for underwater visibility estimation for diving observations and for dredging operations (Wu, de Leeuw, Skidmore, Prins, & Liu, 2007), both for real-time operations, and in conjunction with sediment transport models (Fettweis, Nechad, & Van den Eynde, 2007), to understand dredging requirements.

2.2. Satellite data

Landsat 8 (L8) was launched on February 11, 2013 and normal operations started on May 30, 2013. L8 has a ground track repeat cycle of 16 days with an equatorial crossing time at 10:00 a.m. The Operational Land Imager (OLI) on L8 (Table 2) is a nine band push broom scanner with a swath width of 185 km and eight channels at 30 m and one panchromatic channel at 15 m spatial resolution. Compared to the Thematic Mapper (L4-5/TM) and the Enhanced Thematic Mapper Plus (L-7/ETM+) carried on previous Landsat missions, L8/OLI offers higher signal-to-noise ratios (SNR) – mainly because of longer integration times on the push broom scanner – and a better quantization (12 instead of 8 bits for radiometric digitization). In this study, SPM is retrieved using OLI bands 4 (630–680 nm), and 5 (845–885 nm). Two images of the Thames estuary containing five offshore wind farms will be considered in detail (Table 3). Orthorectified and terrain corrected Level 1T OLI imagery was obtained from USGS EarthExplorer (http://earthexplorer.usgs.gov/). Imagery was processed by the Level 1 Product Generation System (LPGS) versions 2.2.2 and 2.2.3 and is provided in GeoTIFF format with UTM projection and WGS84 datum. Tidal information for both images is provided in Table 4.

The atmospheric correction applied in this paper is fully described in Appendix A. Top of atmosphere reflectance in bands 4 and 5, respectively red and near infrared, is derived from the LIT files. Images are corrected for scattering by molecules (Rayleigh) and aerosols to retrieve water-leaving radiance reflectance, \(\rho_w \), in the red band. Aerosol reflectance is estimated using an approach similar to Ruddick, Ovidio, and Rijkeboer (2000), assuming a constant aerosol type over the scene and a constant ratio of water-leaving reflectances in bands 4 and 5.

Two images (listed in Table 3) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite (EOS-PM) were used for validation of the Landsat 8 processing presented here. MODIS images were obtained from the NASA Ocean Biology Processing Group (OBPG). The high resolution (250 m) 645 nm band was processed from L1A to L2 in SeaDAS 7.0 using the standard approach (Gordon & Wang, 1994a), extended with the iterative turbid water NIR-modeling method (Bailey, Franz, & Werdell, 2010). The standard BRDF correction that uses the computed chlorophyll \(a \) concentration was disabled in these turbid waters.

Suspected particulate matter concentration (SPM) is computed from \(\rho_w \) using the single band algorithm of (Nechad et al., 2010):

\[
SPM = \frac{\rho_{w,\text{sat}}}{\rho_{w,\text{sat}} + C}
\]

where for OLI band 4 the tabulated values for 655 nm are used: \(A = 289.29 \text{ g m}^{-3} \) and \(C = 0.1686 \). For MODIS/Aqua, the 645 nm band-specific values are used: \(A = 258.85 \text{ g m}^{-3} \) and \(C = 0.1641 \).

Table 2

<table>
<thead>
<tr>
<th>Band</th>
<th>Wavelength (nm)</th>
<th>GSD (m)</th>
<th>SNR at reference L</th>
<th>Reference L (W m⁻² sr⁻¹ μm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>433–453</td>
<td>30</td>
<td>232</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>450–515</td>
<td>30</td>
<td>355</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>525–600</td>
<td>30</td>
<td>296</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>630–680</td>
<td>30</td>
<td>222</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>845–885</td>
<td>30</td>
<td>199</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>1560–1660</td>
<td>30</td>
<td>261</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2100–2300</td>
<td>30</td>
<td>326</td>
<td>1.7</td>
</tr>
<tr>
<td>8</td>
<td>500–680</td>
<td>15</td>
<td>146</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>1360–1390</td>
<td>30</td>
<td>162</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Image</th>
<th>Date (ISO8601)</th>
<th>Time (UTC)</th>
<th>Processor MODIS-Aqua</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC201024201311LBGN01</td>
<td>2013-04-28</td>
<td>10:54 UTC</td>
<td>LCPS 2.2.2 12:05 UTC</td>
</tr>
<tr>
<td>LC2010242013246LBGN00</td>
<td>2013-09-03</td>
<td>10:54 UTC</td>
<td>LCPS 2.2.3 12:05 UTC</td>
</tr>
</tbody>
</table>
3. Results

3.1. Comparison with MODIS/Aqua

A qualitative comparison of MODIS and OLI scenes shows that both sensors reveal similar patterns of SPM (Fig. 3). The much higher resolution of OLI – about 8 × 8 pixels to the MODIS pixel – is immediately apparent. The absolute SPM values are also comparable: both sensors retrieve SPM between 5 and 30 g m\(^{-3}\). Also here the resolution difference can be observed: a large range of OLI SPM values is found for a single MODIS pixel. After spatially averaging the OLI pixels, the range of OLI values in the comparison with MODIS is reduced. The high SNR ratio of OLI leads us to believe that the imager is capable of retrieving the spatial variability at its native scale (see Section 3.2). The coherent spatial

<table>
<thead>
<tr>
<th>Date (ISO8601)</th>
<th>High tide (UTC)</th>
<th>Low tide (UTC)</th>
<th>Tidal phase (Dover)</th>
<th>Range</th>
<th>Wind farm</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-28</td>
<td>00:27/12:50</td>
<td>07:41/20:03</td>
<td>HW - 2 h</td>
<td>0.0-7.3 m</td>
<td>London Array</td>
<td>4-5 h</td>
</tr>
<tr>
<td>2013-09-03</td>
<td>09:53/22:13</td>
<td>04:29/16:50</td>
<td>HW + 1 h</td>
<td>1.6-6.1 m</td>
<td>London Array</td>
<td>0-1 h</td>
</tr>
</tbody>
</table>

Fig. 3. Top row: MODIS Aqua (left) and L8/OLI (right) suspended particulate matter maps for the London Array, on 2013-09-03 (a larger version of the OLI image is shown in Fig. 6b). The black patch in the MODIS data is missing data due to cloud flagging. The lower plots show the comparison of OLI against MODIS data, left at ~OLI resolution and right at ~MODIS resolution. The colors denote pixel densities in log scale. The dashed line is the 1:1 line, the solid red line is the ordinary least squares regression line.

Table 4
Harmonic tide predictions from XTide (http://www.flaterco.com/xtide/) for reference station Dover (51.1144°N, 1.3225°E). Tidal phase at Dover with respect to high water (HW) and time since current reversal (ΔT, at each wind farm) are estimated from the tide predictions and the Admiralty Tidal Stream Atlas (United Kingdom Hydrographic Office, 1985, 1995, 2005).
structures in the OLI image also indicate that the vertical striping in the scatterplot is actual spatial variability rather than noise. When the OLI data is spatially averaged to several coarser grids, it is found that this striping is very noticeable when the loss of spatial detail becomes significant (see Section 3.4). The full OLI-MODIS comparison for both wind farms and both images is given in Supplementary Data 1.

3.2. Noise equivalent SPM (SNR requirements)

The signal to noise ratio (SNR) determines whether a sensor can be used for a given application, or what level of spatial or temporal averaging is required to reach the desired performance. To compare the performance of different sensors, the noise-equivalent reflectance, \(NE_r \), or the expected uncertainty on reflectance due to sensor noise, is computed:

\[
NE_r = \frac{\pi \cdot NE_L \cdot d^2}{F0 \cdot \cos \theta_s}\text{ (2)}
\]

where \(F0 \) is the extraterrestrial solar irradiance and \(\theta_s \) the sun zenith angle. The earth–sun distance in Astronomical Units, \(d \), varies \(\sim 3.5\% \) over the year, but is here set to 1 AU as the variability of \(NE_r \), due to changes in \(\theta_s \), is much larger (Eq. 2). \(NE_L \) is the noise-equivalent radiance:

\[
NE_L = \frac{L_{\text{ref}}}{\text{SNR}}\text{ (3)}
\]

with SNR the signal-to-noise ratio at the reference radiances, \(L_{\text{ref}} \), and \(L_{\text{ref}} \) values for several (red) bands on different sensors are given in Table 5. The noise equivalent SPM (NE\(_{\text{rpm}}\)) on different bands can be estimated from \(NE_r \) using the linear approximation of Eq. (1) (the numerator). Fig. 4 shows NE\(_{\text{rpm}}\) for the bands listed in Table 5 as function of \(\theta_s \). Most of these bands are designed for land and cloud applications and have a relatively high NE\(_{\text{rpm}}\), clearly increasing with \(\theta_s \). The only dedicated ocean color band considered here (MODIS 13) has a very high SNR and a correspondingly low NE\(_{\text{rpm}}\). At native resolution, OLI 4 and MODIS 1 show a similar performance of NE\(_{\text{rpm}}\) \(\sim 0.1 \text{ g m}^{-2} \) for \(\theta_s < 50^\circ \), increasing rapidly to \(\sim 0.3 \text{ g m}^{-2} \) for larger \(\theta_s \). MODIS1 is a high resolution (250 m) land band and is typically aggregated to 1 km for ocean color processing, which will reduce noise by a factor of 4. For the OLI images in Table 3, \(\theta_s \) are 36° and 40°, giving an estimated NE\(_{\text{rpm}}\) \(\sim 0.1 \text{ g m}^{-2} \). The L7/ETM + band is especially noisy, and a spatial binning to 9 \(\times \) 9 pixels (270 m) is required to reach the NE\(_{\text{rpm}}\) level of OLI. Actually further binning to 11 \(\times \) 11 pixels (330 m) is required, as the limited digitization (8 bits) of the ETM + introduces additional noise to the order of \(\sim 74\% \) of the NE\(_{\text{rpm}}\). SEVIRI has a high temporal frequency (15 min, 5 min in rapid scan mode) and the noise can be reduced by temporal averaging. For example, in Vanhellemont, Neukermans and Ruddick (2013) a 5-image averaging was used that retained temporal variability, and reduced the NE\(_{\text{rpm}}\) given in their Fig. 4 by \(\sqrt{5} \).

3.3. Top of atmosphere spectral shape

The brown color of the turbine monopile wakes on the RGB composites gives a strong qualitative indication that they are sediment plumes rather than atmospheric effects or foam/white caps. This is investigated quantitatively here. In Fig. 5, \(f_{\text{TOA}} \) (reflectance at Top Of Atmosphere) spectra are shown for points inside and just outside the turbine monopile wakes (a–b) as well as a contrasting example from a boat (c) and its wake (d–e). The inside and outside points are close to 110 m so it can be assumed that from the sensor’s perspective the atmosphere is identical. Thus, the difference in \(f_{\text{TOA}} \) (inside–outside) removes the atmospheric signal and represents the signal from the extra optically active constituents in the wake. The turbine monopile wake pixels a) and b) show a typical turbid water spectrum (e.g. Fig. 5 in Dockar et al., 2002 and Fig 7 in Ruddick, De Cauwer, Park, & Moore, 2006) with a strong reflectance in the red band (B4). This increase of \(\sim 0.01 \text{ sr}^{-1} \) corresponds to a SPM of \(\sim 3 \text{ g m}^{-3} \), i.e. a difference with the ambient SPM larger than the estimated NE\(_{\text{rpm}}\) (see paragraph 3.2). The boat pixel shows a much larger, and spectrally flat, increase in reflectance. The boat’s wake just after the stern also shows a flat and rather large increase in reflectance (note the scale difference with the turbine wakes), probably caused by foam on the sea.

Table 5

Red bands on several sensors with extraterrestrial solar irradiance, \(F0 \), signal-to-noise ratio, SNR, at reference radiances, \(L_{\text{ref}} \), at 52°N, 2°E at 11 UTC.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Wavelength (band)</th>
<th>(F0) (W m(^{-2}) μm(^{-1}))</th>
<th>SNR at (L_{\text{ref}})</th>
<th>(L_{\text{ref}}) (W m(^{-2}) sr(^{-1}) μm(^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR/1-2</td>
<td>630 nm (1)</td>
<td>1543</td>
<td>222</td>
<td>22</td>
<td>Irons et al. (2012)</td>
</tr>
<tr>
<td>AVHRR/3</td>
<td>630 nm (1)</td>
<td>1543</td>
<td>222</td>
<td>22</td>
<td>Irons et al. (2012)</td>
</tr>
<tr>
<td>Aqua/MODIS</td>
<td>645 nm (1)</td>
<td>1578</td>
<td>140</td>
<td>16.5</td>
<td>Franz et al. (2006)</td>
</tr>
<tr>
<td>MSG-1/SEVIRI</td>
<td>635 nm (VIS6)</td>
<td>1618</td>
<td>10.1</td>
<td>5.33</td>
<td>Govaerts and Clerici (2004)</td>
</tr>
<tr>
<td>MTG-1/FCI</td>
<td>645 nm (VIS6)</td>
<td>1589</td>
<td>30</td>
<td>5.06</td>
<td>MTG Mission Requirement Document (2007)</td>
</tr>
<tr>
<td>Sentinel-2/MSI</td>
<td>665 nm (4)</td>
<td>1556</td>
<td>0.7 (at L(\text{mean}))</td>
<td>3.21 (L(\text{max}))</td>
<td>Drusch, Gascon, and Berger (2010)</td>
</tr>
</tbody>
</table>

* Band center F0 (Thuiller et al., 2003).
Further away from the stern (in this case ~2 km) the boat wake is brown, with a large reflectance in the red band, showing the temporary effect of large vessels on SPM in shallow waters.

3.4. Wind turbine wakes

Suspended particulate matter concentration (SPM) maps for both wind farms on both images are given in Figs. 6 and 7. High SPM is found to be associated with shallow sand banks, and small scale eddies are observed on fronts between clear and turbid waters. Turbid ship wakes of several kilometers in length are visible. A striking observation is that sediment plumes are associated with the wakes of individual turbine monopiles of offshore wind farms. From Fig. 5 it is clear that the brown color of these wakes is caused by an in-water wake phenomenon (SPM) and not an atmospheric wake or air–sea interface phenomenon. The observed plume width is between 1 and 5 pixels, or 30–150 m. The wakes are aligned with the tidal streams (arrows in Figs. 6 and 7). The length of these sediment plumes is one to several km, and is longer for the 2013-04-28 image, presumably because of the longer time since current reversal. On Fig. 7a, the wakes in the farm show a regular pattern around the turbines extending far downstream. In the deeper gulley just south of the farm, the ambient SPM concentration is lower. The regularly spaced pattern appears again on the shallow sand bank, more than 10 km downstream. This length scale correlates well with the average current velocity and the time since current reversal (~5 h, Table 4). The more recent current reversal in Fig. 7b is also clear from the irregular shape of the plumes.

3.5. Impact of spatial resolution demonstrated by degrading OLI/L8

To assess the value of high resolution imagery for coastal water monitoring, OLI SPM data was spatially averaged to several coarser grids. Fig. 8 shows the OLI data for the London Array on 2013-09-03, spatially averaged to 150, 300 and 900 m grids. A comparison of the native resolution (30 m) and resampled data is shown in the scatter plots. The vertical striping in the density plots shows the variability observed within one aggregated pixel. This variability corresponds to the small scale features such as boat and monopile wakes, small eddies and fronts. The turbid wakes of ships and wind turbines are still visible in the 150 m data depending on the image and location, i.e. when the contrast with the surrounding waters is high. Spatial detail is quickly lost at coarser resolutions, which is also manifested by the increased vertical striping in the scatterplot. While the increased turbidity could be measured in the moderate resolution pixel, it would be difficult to detect, as it will be (much) smaller than the short term SPM changes in the region (see e.g. Figs. 5 through 7 in Vanhellemont, Neukermans et al., 2013). The spatial information will be absent, as many features are smaller than the moderate pixel resolution. From the images we present (Figs. 6 and 7) it is clear that the spatial resolution can be an essential factor in understanding changes in surface SPM. At 300 m the larger scale coastal and estuarine features associated with sand banks are.
much better represented than at 900 m. The value of imagery at this spatial resolution, similar to the MERIS full resolution mode and the MODIS high resolution bands, for coastal zone research is clear. The full set of resampled data is shown in Supplementary Data 2.

4. Discussion

A significant increase in suspended sediments has been observed in the wakes of individual turbine monopiles in offshore wind farms. The
wakes are aligned with the tidal streams and their direction changes with the tide. The plumes are 30–150 m wide and typically extend 1 or more km downstream from the turbine. The extent of the plumes of the Thanet farm on 2013-04-28 seems to exceed 10 km. The plume length is likely related to the time-integrated current since reversal and particle settling velocity. SPM concentration could depend on seafloor sediment type and water depth as well as artificial seafloor modifications (scour protection etc.).

Impacts of these turbid turbine wakes are currently unknown, but the spatial extent is considerable and the turbidity change may be persistent (repeating each current reversal), warranting further research on their environmental impact. Changes in the underwater light field affect for example primary production and visual predation. The observed wakes suggest changes in sedimentation patterns that could potentially cause bathymetric modification. The source of the suspended sediment is unclear, and has to be investigated: if the material is eroded at the base of the turbine, additional scour protection might be required. Scour pits can form quickly around monopile structures, they are aligned with the current and can be partially filled in after tide reversal (Whitehouse, Harris, Sutherland, & Rees, 2011). Scour depths depend on pile diameter, currents, waves, water depth and seafloor sediment (Whitehouse et al., 2011). At the wind farms discussed here, scour protection is currently only installed for cable crossings and offshore substations at the London Array, and for certain sections of the export cable at Thanet.

The results from our simple OLI processing compare well to the established MODIS-Aqua data, and we are confident in the retrieved patterns of SPM. Even the absolute retrievals are in good agreement,
especially considering the temporal dynamics of the region and the large differences in viewing conditions and sensor design. In both MODIS scenes, the view zenith angle for the study area is quite large, ~50°, therefore the geometric distortion in the images is large as well, causing a spatial mismatch with the nadir-viewed OLI data. This spatial mismatch introduces rather large errors especially due to the resolution difference of the sensors (OLI: 30 m, MODIS: 250 m). Moreover, due to the scanning system of MODIS, these edge of swath pixels have a much larger footprint than the central ~250 m pixels, with significant overlap between scan lines (the so called ‘bow-tie effect’). The bidirectionality of the marine reflectance in turbid waters is not accounted for in the processing and there is a considerable difference in viewing geometry between these OLI and MODIS images. Furthermore, there is a one hour difference between their acquisition, which in this region can already cause significant differences in surface SPM concentrations (Vanhellemont, Greenwood et al., 2013; Vanhellemont, Neukermans et al., 2013). For example, considerable discrepancies have also been found when two images from adjacent swaths of MODIS-Aqua, with different viewing angles and spaced ~100 min apart, are compared (e.g. Fig. 9 in Vanhellemont, Neukermans et al., 2013). As such differences exist within the same system, we have not attempted to assess the differences caused by the different atmospheric correction approaches used for MODIS (SeaDAS) and OLI (this paper). Uncertainties on the OLI calibration could cause significant systematic discrepancies in the comparison, but it is too early in the Landsat 8 mission to have a good estimate of calibration performance.

With these results from L8/OLI, the advantages of high resolution imagery for offshore applications are clear. The high spatial resolution (30 m) resolves small scale turbidity features, and the high patchiness of the suspended sediments in coastal waters can be studied. By spatially averaging OLI data (Fig. 8) it is illustrated that observation of the impact of the turbine wakes on turbidity is impossible with moderate resolution satellite data such as MODIS/Aqua. Next to L8/OLI, other high resolution and very high resolution sensors could be used to monitor the turbine wakes from offshore turbines. For quantitative monitoring of suspended sediment concentrations, sensors are needed with a red and near infrared band for aerosol correction, sufficiently high signal:noise ratio (see e.g. Section 3.2) and good digitization (10 or 12 bit). For example, the RapidEye System has a multispectral push broom scanner with a 6.5 m ground resolution and suitable bands (630–685 and 760–850 nm). Pléiades has a 2 m resolution multispectral imager with similar but wider bands (600–720 and 750–950 nm). These programs have constellations of identical satellites (currently: 5 RapidEye and 2 Pléiades) that can provide improved temporal coverage. Older Landsat data (TM/ETM++) have similar bands to L8/OLI, but radiiances are digitized using only 8 bit and for marine application the images are quite noisy at native resolution. Many other missions with suitable bands that could be investigated are currently flying, such as SPOT, IKONOS, Quickbird, Worldview-1, and Worldview-2. A future mission of interest is Sentinel-2, with expected launch in 2014. Sentinel-2 will routinely cover coastal regions with 13 bands at 10–60 m spatial resolution, including 10 m red and near infrared bands with central wavelengths 665 and 842 nm.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.rse.2014.01.009.

Acknowledgments

NASA is thanked for the MODIS/Aqua data and the SeaDAS processing software. USGS is thanked for the distribution of OLI/Landsat 8 data. Rodney Forster is thanked for the idea of using Landsat 8 for monitoring wind farms and their impact on suspended sediments. The image processing software used here was developed in the framework of the JELLYFOR project, funded by the Belgian Science Policy Office STEREO program (contract SR/37/135).

Appendix A. Atmospheric correction of OLI imagery

The simple atmospheric correction for the Operational Land Imager (OLI) on board of Landsat 8 (L8) is described in this appendix. Band averaged values of solar irradiance, F_0 (Thuillier et al., 2003), water absorption, a_w (Kou, Labrie, & Chylek, 1993; Pope & Fry, 1997), Rayleigh optical thickness, τ_r (Bodhaine, Wood, Dutton, & Slusser, 1999), and Ozone optical thickness, τ_{oz} (Anderson, Hupalo, & Mauersberger, 1993, 1990; Anderson, Maeder, & Mauersberger, 1991; Anderson & Mauersberger, 1992; Anderson, Morton, & Mauersberger, 1990;
Burkholder & Talukdar, 1994) were calculated by convoluting the OLI relative spectral response function (Barsi, Markham, & Pedelty, 2011) over values tabulated by Bryan Franz (http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html).

Table A1

<table>
<thead>
<tr>
<th>Band</th>
<th>FO</th>
<th>(\omega_r)</th>
<th>(\tau_\infty) (unitless)</th>
<th>(\tau_{\infty}(a)) (unitless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Coastal/Aerosol)</td>
<td>1895.6</td>
<td>7.24 \cdot 10^{-3}</td>
<td>2.35 \cdot 10^{-1}</td>
<td>8.79 \cdot 10^{-4}</td>
</tr>
<tr>
<td>2 (Blue)</td>
<td>2004.6</td>
<td>1.56 \cdot 10^{-2}</td>
<td>1.69 \cdot 10^{-1}</td>
<td>5.87 \cdot 10^{-3}</td>
</tr>
<tr>
<td>3 (Green)</td>
<td>1820.7</td>
<td>6.96 \cdot 10^{-2}</td>
<td>9.02 \cdot 10^{-2}</td>
<td>3.14 \cdot 10^{-2}</td>
</tr>
<tr>
<td>4 (Red)</td>
<td>1549.4</td>
<td>3.74 \cdot 10^{-1}</td>
<td>4.79 \cdot 10^{-2}</td>
<td>1.82 \cdot 10^{-2}</td>
</tr>
<tr>
<td>5 (NIR)</td>
<td>951.2</td>
<td>4.63 \cdot 10^{-1}</td>
<td>1.55 \cdot 10^{-2}</td>
<td>6.43 \cdot 10^{-4}</td>
</tr>
<tr>
<td>6 (SWIR 1)</td>
<td>247.6</td>
<td>7.76 \cdot 10^{-2}</td>
<td>1.28 \cdot 10^{-3}</td>
<td>0</td>
</tr>
<tr>
<td>7 (SWIR 2)</td>
<td>85.5</td>
<td>2.26 \cdot 10^{-2}</td>
<td>3.70 \cdot 10^{-4}</td>
<td>0</td>
</tr>
<tr>
<td>8 (PAN)</td>
<td>1724.0</td>
<td>1.80 \cdot 10^{-1}</td>
<td>7.94 \cdot 10^{-3}</td>
<td>2.66 \cdot 10^{-2}</td>
</tr>
<tr>
<td>9 (CIRRIUS)</td>
<td>367.0</td>
<td>5.09 \cdot 10^{-1}</td>
<td>2.40 \cdot 10^{-3}</td>
<td>0</td>
</tr>
</tbody>
</table>

A.1. Top of atmosphere reflectance

Top of atmosphere (TOA) radiances, \(L_{\text{TOA}}\), were computed from Digital Numbers (DN) in bands 4 and 5:

\[
L_{\text{TOA}} = M_i \cdot \text{DN} + A_i
\]

(A1)

with \(M_i\) (multiplicative factor, gain) and \(A_i\) (additive factor, offset) values provided in the LPGS metadata file. TOA reflectances \(\rho_{\text{TOA}}\) were computed by normalizing \(L_{\text{TOA}}\) to the band averaged solar irradiance:

\[
\rho_{\text{TOA}} = \frac{\pi \cdot L_{\text{TOA}} \cdot d^2}{F_0 \cdot \cos \theta_0}
\]

(A2)

where \(d\) is the earth–sun distance in Astronomical Units, \(\theta_0\) the sun zenith angle and \(F_0\) the band averaged solar irradiance. \(\rho_{\text{TOA}}\) represents the sum of reflectances observed by the sensor:

\[
\rho_{\text{TOA}} = \rho_r + \rho_a + \rho_{nw} + \rho_{\omega_r} + \rho_{\alpha r} \cdot (\rho_{\omega_r} + \rho_{\omega a})
\]

(A3)

where \(\rho_r\) and \(\rho_a\) are the reflectances resulting from Rayleigh and aerosol scattering, \(\rho_{\omega_r}\) represents the interaction between the two and can be included in the multiple scattering \(\rho_{\alpha r}\) estimation. \(\rho_{\omega_r}\) is the specular reflection of the sun which will be ignored as in the study area the sun zenith angle \(\theta_0\) is always much larger than the viewing zenith angle \(\theta_\omega\), \(\theta_\omega\) and \(\theta_r\) are the sun–sea and sea-sensor diffuse transmittances, \(\rho_{\omega a}\) is the reflectance of foam and whitecaps and can be estimated from wind speed using an empirical relationship. Here we ignore \(\rho_{\omega a}\), and it is assumed to be largely corrected for in the aerosol correction (Gordon & Wang, 1994b). \(\rho_{\omega_r}\) is the parameter of interest, marine reflectance, or water-leaving radiance reflectance, defined as \(\pi t\) times the water-leaving radiance divided by above-water downwelling irradiance. For the atmospheric correction in this paper we simplify \(\rho_{\text{TOA}}\) to:

\[
\rho_{\text{TOA}} = \rho_r + \rho_a + \rho_{\alpha r} \cdot (\rho_{\omega_r} + \rho_{\omega a})
\]

(A4)

For each band the diffuse transmittance for the sun–sea \((\theta_\omega)\) and sea-sensor \((\theta_r)\) paths are estimated by substituting \(\theta\) by \(\theta_\omega\) and \(\theta_r\) in:

\[
t = \exp \left[-\frac{\tau_r + \tau_{\alpha r}}{2} \cdot \cos \theta \right]
\]

(A5)

where \(\tau_r\) and \(\tau_{\alpha r}\) are the band averaged Rayleigh and Ozone optical thicknesses for a standard atmosphere (see Table A1). Water vapor absorption and aerosol impact on atmospheric transmittance are currently ignored in the processing, adding a few percent uncertainty on the final OLI product, but not affecting the spatial features.

A.2. Rayleigh correction

The Rayleigh reflectance, \(\rho_r\), is estimated (Gordon, Brown, & Evans, 1988) according to:

\[
\rho_r = \tau_r \cdot \rho_\theta \cdot \Theta (\Delta \phi) \cdot \left(4 \cos \theta_\omega \cos \theta_r \right)^{-1}
\]

(A6)

where \(\Delta \phi\) is the relative azimuth angle between sun and sensor, and with

\[
\rho_\theta = \rho_\theta(\theta_\omega, \theta_r, \Delta \phi) = P_r(\theta_\omega) + \left[r(\theta_\omega) + r(\theta_r) \right] \cdot P_r(\theta_r)
\]

(A7)

where the scattering angles \(\theta_r\) represent the Rayleigh contribution from photons that have not interacted with the sea surface \((\theta_\omega)\) and from photons that have been specularly reflected by the sea surface before or after scattering \((\theta_r)\). \(\rho_\theta\) is calculated from sun-sensor geometry:

\[
\cos \theta_r = \pm \cos \theta_\omega \cos \theta_r - \sin \theta_\omega \sin \theta_r \cos (\theta_\omega - \theta_r)
\]

(A8)

with \(\theta_\omega\) and \(\theta_r\) the sun and sensor azimuth angles, and \(P_r(\theta)\) the Fresnel reflectance for air-incident rays at an incidence angle \(\theta\):

\[
P_r(\theta) = 0.75 \cdot \left(1 + \cos^2 \theta\right)
\]

(A9)

\[
r(\theta) = 0.5 \cdot \left(\frac{\sin^2 (\theta - \theta_r)}{\sin^2 \theta_r} + \frac{\tan^2 (\theta - \theta_r)}{\tan^2 \theta_r}\right)
\]

(A10)

\[
\theta_r = \sin^{-1}(n_w \sin \theta)
\]

(A11)

where \(n_w\) is the angle of transmittance and \(n_w\) the refractive index of water with respect to air, taken as 1.34. Rayleigh-corrected reflectance \(\rho_r\) is then obtained after subtraction of \(\rho_r\) from \(\rho_{\text{TOA}}\):

\[
\rho_c = \rho_{\text{TOA}} - \rho_r = \rho_a + \rho_{\omega_r} \cdot \rho_{\alpha r}.
\]

(A12)

A.3. Aerosol correction

Two further assumptions for the aerosol correction are made, similar to the assumptions in Ruddick et al. (2000) and Neukermans et al. (2009): \(\alpha\), the ratio of marine reflectances in the two bands is constant, here estimated using the average similarity spectrum from (Ruddick et al., 2006) for the band central wavelengths:

\[
\alpha = \frac{\rho_\omega(443nm)}{\rho_\omega(555nm)} = \frac{4.734}{0.544} = 8.702
\]

(A13)

\(\alpha\), the ratio of multiple-scattering aerosol reflectances, is constant over the scene:

\[
\varepsilon = \frac{\rho_\omega(675nm)}{\rho_\omega(555nm)}.
\]

(A14)

In the two OLI bands used here, the constant \(\alpha\) derived from \(\omega_r\) is only valid for moderate turbidities, as the relationship will be non-linear at higher marine reflectances (see Fig. 4 of Ruddick et al., 2006). In the images presented in this paper, Eq. (A13) seems to be a good approximation. The aerosol reflectance ratio \(\varepsilon\) can be derived from clear-water pixels where the water reflectance is negligible and thus where only the aerosols contribute to the TOA signal. On a scatter plot of \(\rho_r^{\omega(443)}\)
as function of $\rho(5)\gamma$ these pixels are on a straight line with slope e. From these scatter plots of the April and September images, e was respectively set to 0.93 and 0.90. These are unusual values for e, potentially caused by a calibration bias. After processing with a more standard $e = 1$, a decrease in SPM by 2–6% is found for SPM > 5 g m$^{-3}$ without changing the spatial patterns in the image.

Using the reasoning described by Riddick et al. (2000), marine reflectance in band 4, ρ_{w}^{4}, can be calculated from ρ^{4} and ρ^{5}:

$$\rho_{w}^{4} = \frac{\alpha^{5}}{\rho^{5}} \frac{\rho^{4}}{\rho^{5} - \rho^{6}}$$

(A15)

where γ is the ratio of diffuse atmospheric transmittances in the two bands:

$$\gamma = \frac{t_{w}^{4}}{t_{w}^{5}}$$

(A16)

References

