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ABSTRACT

Amplitude modulation (AM) is a characteristic feature of wind farm noise and has the potential to con-
tribute to annoyance and sleep disturbance. Detection, quantification and characterisation of AM is rel-
evant for regulatory bodies that seek to reduce adverse impacts of wind farm noise and for researchers
and wind farm developers that aim to understand and account for this phenomenon. We here present
an approach to detect and characterise AM in a comprehensive and long-term wind farm noise data
set using human scoring. We established benchmark AM characteristics, which are important for valida-
tion and calibration of results obtained using automated methods. We further proposed an advanced AM
detection method, which has a predictive power close to the practical limit set by human scoring.
Human-based approaches should be considered as benchmark methods for characterising and detecting

Wind farm noise unique noise features.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Amplitude modulation (AM) of wind farm noise (WFN) is a
unique feature known to contribute to annoyance [1-3] and possi-
bly sleep disturbance [4-6]. AM in the context of WFN is defined as
a periodic variation in sound pressure level (SPL) at the blade-pass
frequency [7,8], typically between 0.4 and 2 Hz, and is typically
most prominent during the evening and night-time when environ-
mental conditions tend to be more favourable for AM [9-11]. AM is
a highly variable phenomenon, depending on meteorological con-
ditions [12,11,13], distance from the wind farm and wind farm
operating conditions [9], making AM challenging to detect. Subse-
quently, characterising AM also becomes a challenging task
because it depends on the performance of AM detectors.

Despite the difficulty in detecting AM, this noise phenomenon is
commonly detected using simple engineering methods [8] using
specific noise features (single predictors). For example, one of the
first frequency domain-based methods, as proposed by Lundmark
[14] detected and quantified AM using the AM spectrum of the
time variation of instantaneous SPLs. To detect AM in field mea-
surements of wind farm noise, this method was extended by spec-
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ifying additional criteria such as a valid spectral peak frequency
range of 0.6-1.0 Hz [12], and critical values of the maximum spec-
tral peak of 0.4 dB [12] or 0.6 dB [11]. Time domain-based methods
typically detect AM using SPL variations, where AM is classified as

the difference between the 5™ and 95™ percentile of SPL greater
than 2 dB [15] or as a peak-to-trough difference of 3 dB or 5-
6 dB [16,17]. Recently, the UK Institute of Acoustics has developed
a hybrid method [7], which is a combination of time and frequency
domain methods. This method uses the prominence ratio, a ratio of
the peak and masking noise levels, as a predictor of AM occurrence.
The main advantage of these engineering methods is the ease of
their implementation and computational speed, which makes
them suitable for automated analysis of large data sets [9,11,12].
However, evaluation of the performance of these methods is cur-
rently limited to false positive rates alone, or to small data sets
[7,12,16] or is lacking altogether [15,18].

Detection and quantification of AM using automated detectors
has been adopted in many previous studies [10,12,13,9,11]. This
approach is practical and efficient as the analysis of AM is usually
implemented on large data sets. In fact, using automated detectors,
several unique AM features can be identified and possible associa-
tions between weather conditions [12], wind farm operation con-
ditions, distances to wind farms [9], and the diurnal and seasonal
variation of AM [11,13] can be identified. However, the above


http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2021.108286&domain=pdf
https://doi.org/10.1016/j.apacoust.2021.108286
mailto:ducphuc.nguyen@flinders.edu.au
https://doi.org/10.1016/j.apacoust.2021.108286
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust

P.D. Nguyen, K.L. Hansen, B. Lechat et al.

AM characteristics and associated variables have been identified
based on the assumption that the performance of currently avail-
able AM detectors is reasonable.

Human detectors are usually considered as a benchmark (or
gold-standard) method for classification tasks which require
unique skills to detect target features [19]. Although this approach
is likely impractical to use for detecting AM in year-long data sets,
it has some merits. A small subset can be extracted from a large
data set using statistical sampling methods [20]. If AM samples
in this subset are identified by skilled scorers, this information
can be used to detect and quantify AM in the large data set. Addi-
tionally, this human-scored subset is useful for developing
advanced AM detectors such as machine learning methods. In fact,
machine learning methods are emerging in many acoustical appli-
cations [21] such as noise predictions [22,23], sound propagation
[24] and noise source classification [25,26]. These methods allow
for the combination of multiple, otherwise isolated noise features
into one robust classifier. This overcomes one of the major issues
associated with traditional AM detection methods, which is the
reliance on a single noise feature, which poorly accounts for the
highly variable and multifaceted phenomenon of AM [8].

The aims of this study were twofold: (1) to establish benchmark
characteristics of AM based on the results of expert human detec-
tors, and (2) to develop an advanced AM detection method based
on the benchmark data set. To create the benchmark data set,
6,000 10-s audio files were randomly extracted from a database
including 1 year measurements at two residences located near dif-
ferent wind farms. AM samples in this subset were then identified
by a single scorer using a listening experiment under controlled
conditions. Subsequently, the benchmark AM characteristics were
established and compared with previous published findings.
Finally, using the above benchmark data set, an advanced AM
detection method was developed which is based on the random
forest classification algorithm [27]. Three widely-used AM detec-
tion methods [12,15,7] were also evaluated. In particular, this
study demonstrates a promising method to reliably establish AM
characteristics. Also, the advanced method described in this paper,
which is based on a state-of-the-art algorithm, outperformed cur-
rent methods and is effective for exploration of large wind farm
noise data sets.

2. Methods
2.1. Overview of study region and data collection

The acoustical data sets used in our study were measured at
four residences (H1-H4) located 980 m (H1), 1.3 km (H2), 3.5 km
(H3) and 30 km (H4) from the nearest wind turbine of South Aus-
tralian wind farms (Fig. 1). These distances are relevant to wind
farms in Australia where residences usually located greater than
1 km from wind farms. Residence H4 was unoccupied and located
far away from wind farms, and thus it was assumed that AM WFN
did not exist at this location. Noise data were measured for one
year at locations H1 and H2 and two weeks and five months at
locations H3 and H4, respectively. The H3 data set also contained
approximately three days of measurements of background noise
when the wind farm was not operating.

The data measured at H1 and H2 were used for establishing
benchmark AM characteristics as well as training and validating
the AM detection algorithm. The data measured at H3 and H4 were
used for false positive rate validation of the proposed AM detection
method and previously published methods. The characteristics of
wind farms at the time of measurements are shown in Table 1.

A typical measurement setup included a microphone that was
positioned at 1.5 m above ground level (except H1 where a ground

Applied Acoustics 183 (2021) 108286

level microphone was used) and protected using a secondary
windshield with a diameter of 450 mm (See Hansen et al. [28]
for details). The microphone was typically positioned at least
10 m away from the residence and surrounding vegetation to min-
imize facade reflections and wind-induced vegetation noise. At all
measurement locations, acoustic data were acquired using a Bruel
and Kajer LAN-XI Type 3050 data acquisition system with a sam-
pling rate of 8,192 Hz and a G.R.A.S type 40 AZ microphone with
a 26CG preamplifier, which has a noise floor of 16 dB(A) and a flat
frequency response down to 0.5 Hz. Further details of the experi-
mental setup are described in [9,28].

2.2. Benchmark data set generation

One benchmark data set contained 6,000 10-s audio files of
WEN and the second one of equal size contained no WFN (environ-
mental background noise only). The first data set was used for
establishing benchmark AM characteristics and developing the
AM detection method, while the latter data set was specifically
constructed for testing false positive detection. These data sets
were selected randomly from recorded data using the resampling
without replacement technique (i.e., each 10-min sample has only
one chance to be selected in the data set) (See Supplementary
Fig. S1 for details).

The WFN benchmark data set was primarily scored by a single
scorer using a validated rating experiment procedure based on
detection theory [29]. The scorer was an acoustician experienced
with wind farm noise AM through both field measurements and
listening tests. The scorer also was familiar with AM characteristics
in the time and frequency domains. Acoustician scorers familiar
with the acoustic features of AM were selected to avoid potential
confounding and bias by other acoustic and non-acoustic features
unrelated to AM through the use of non-acoustician scorers.
Intra-scorer variability was validated in which the scorer re-
scored a sub-set of the data (100 samples) in a blinded manner.
To further evaluate inter-scorer agreement, another skilled scorer
also rated a sub-sample of 100 randomly chosen audio samples.
These scorers listened to the audio files and scored the presence
versus absence of AM. AM presence was rated based on confidence
level which varied from high confidence of AM absence (rating ‘1’),
to uncertainty between AM presence/absence (rating ‘3’), to high
confidence of AM presence (rating ‘5’). For this particular AM iden-
tification task, the modulated frequency and duration of AM pres-
ence were not identified by the scorer. A MATLAB GUI was
designed for the experiment as shown in Fig. 2. To maximise the
performance of detection task, the scorers were allowed to adjust
headphone volume level and to listen the audio multiple times
before rating. Therefore, AM samples, regardless of their audibility,
were detected by the scorer. The visual characteristics of AM were
also presented to the scorers, as shown in Fig. 2. This additional
information was expected to further improve the scorer’s AM
detection performance. The rating experiment was performed in
a bedroom at the Adelaide Institute for Sleep Health. The noise
reproduction system consisted of Bose Quite Comfort II head-
phones and a RME Babyface Pro sound card. The background noise
in the headphone cavity was approximately 22 dBA during the
experiment.

2.3. Automated AM detectors

The proposed AM detection method was compared against
three previously published AM detection methods. The first
method, labelled a1l [7], uses a “hybrid” approach involving
analysis in both the time- and frequency-domains. The other two
methods labelled a2 [12] and a3 [15] are implemented in the
frequency- and time-domains, respectively. To make these
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Fig. 1. (Color online). Study region.

methods consistent, all methods were implemented using audio
samples with a 10 s period and a fast time weighting of 100 ms.

Method a1 band-pass filters the signal over the expected AM
frequency range, calculates the fast-time weighted SPL time series,
detrends the data, then transforms the detrended SPL time series
data to the frequency-domain. AM is then detected where the
prominence ratio (PR), the ratio between the spectral peak in the
blade-pass frequency range and the noise floor, is greater than four
[7].

Method a2 is implemented by first applying a low-pass filter at
1 kHz, calculating the fast-time weighted SPL and then transform-
ing this time series into the frequency-domain. The AMfactor, the
maximum spectrum amplitude between 0.6 Hz and 1 Hz, is then
used to obtain the threshold for AM detection. The suggested
threshold is 0.4 [12].

Table 1
Wind farm characteristics.

Name Wind farm  Wind farm  Wind

1 2 farm3
Nominal capacity (MW) 315 148 131
Turbine size (MW) 3.2 2.1 (3.0&3.3)
Type Siemens Suzlon Vestas
Number of turbines 99 70 37
Wind farm latitude —33.058 -33.367 —33.983
Wind farm longitude 138.544 138.728 138.900
Annual output (mean =+ s.d.) 125 + 97 54 + 44 45 + 38

Mw)

Method a3 is implemented by applying a low-pass filter at
1 kHz and then detrending the fast-time weighted SPL. After quan-
tifying the variation of the detrended SPL via calculating the differ-
ence between statistical noise levels Los and Ls, this value, referred
to as DAM, is used as a threshold for detecting AM. The suggested
threshold varies from 2 dB to 6 dB [15-17]. More details regarding
these methods are available as pseudo code provided in Supple-
mentary Algorithm 1-3. Also, the source code for method al, as
provided by [30] was re-implemented using MATLAB in our study
(Supplementary Fig. S2).

2.4. Random forest classifier for AM detection

A random forest classifier [27] consists of decision trees, which
represent possible outcome maps for a series of related choices.
Decision trees are easy to use and generally work very well with
the data used to create them, but are more problematic for predic-
tive learning models requiring more flexibility for accurate classi-
fication of new data [20]. To overcome these decision tree
problems, the random forest classifier uses bootstrap sampling
and random variable selection to build multiple trees, which are
then combined into a random forest classifier as shown in Fig. 3.
To classify an input sample (i.e., AM or no AM), the relevant audio
features are plugged into every predictor (tree) in the classifier.
Then each predictor classifies the sample as “AM” or “no AM”.
Finally, a majority voting approach is used to decide if the input
audio can be classified as containing “AM” or “no AM”. This
achieves a probabilistic classifier, where the ratio between the
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number of trees voting “AM” out of the total tree population rep-
resents the probability of AM being present.

Optimisation of hyperparameters, that is parameters which are
set before the learning begins, was done using a random searching
technique [31]. The following set of hyperparameters were
adjusted: number of trees, number of features considered for split-
ting at each leaf node, maximum number of decision splits, and the
minimum number of data points allowed in a leaf node. The ran-
dom searching technique utilises a range of realistic hyperparam-
eter values, as shown in Table 2.

Table 2

Value ranges of the hyperparameters used for
random searching.

Hyperparameter Range

Num tree {2,4,8,...1024}
Max num feature {1,2,3,...31}
Max num split {2,4,8,...4096}

Max leaf size {2,4,8,...1024}

2.5. Audio feature extraction

WEN spectra are dominated by lower-frequencies, particularly
at distances greater than 1 km from a wind farm [8]. Also, WFN
can contain both tonal AM [9] and/or broadband AM. Furthermore,
AM can occur at frequencies ranging from 30 Hz to more than
1 kHz, and the peak-to-trough magnitude can vary between each
successive oscillation period [12]. To help capture the highly
variable and evolving nature of WEN, which likely influences AM
characteristics and consequently detection performance, a com-
prehensive range of 31 noise features were used in this study as
shown in Table 3 (See Supplementary Table S1 for full feature
name details). The noise features were divided into four categories,
including frequency domain features, overall noise features, time
domain features and features extracted from the other automated
AM detection methods described in Section 2.3.

The frequency domain feature categories (feature 1 to feature
13) have been explained in detail in previous reviews [33,32] and
the pseudo code for extracting these features can also be found
in [33]. Fig. 4A shows the process to extract these audio features.
A hamming window of 125 ms (50% overlap) is applied to the input

Table 3
Feature descriptions.
Feature  Category Description Ref.
No.
1-13 Frequency These features describe properties of [32,33]
domain the noise frequency content such as
features spectrum balance, spectrum shape and
tonality.
14-17 Overall Overall A, C, G-weighted SPLs and its [34]
noise related features
features
18-27 Time Including features extracted from fast- Proposed
domain time A-weighted, unweighted and
features octave-band unweighted SPLs.
28-31 Published PR (Prominence ratio) [7]
methods

Fo (Fundamental frequency)
AMfactor [12]
DAM [15]
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signals which are then transformed to the frequency domain using
an FFT. The signals are then filtered using bark scale critical bands
and the spectral shape features are calculated for each hamming
window. The outcome of the process is a matrix (No. of features
x No. of windows). The mean values of the rows in this matrix were
calculated, resulting in a single value for each feature. The overall
noise feature category (feature 14 to feature 17) such as A, C and
G-weighted SPLs were also extracted as shown in Fig. 4B. The
selected features were Lceq/Laeq, Leeq/Laeq, and Leeg — Laeg, as these
measures are expected to be indicative of WFN presence and spec-
tral balance [35,36,8]. The La.q Was selected as it has been used as a
metric for analyzing AM in previous studies [12,37]. The time-
domain feature category (Feature 18 to feature 27) was extracted
as shown in Fig. 4C. The fast-time weighted SPL (125 ms overlap-
ping 100 ms) was calculated, similar to the method for calculating
the prominence of impulsive sounds outlined in Nordtest [18]. The
derived SPL (40 Hz sampling frequency) was further smoothed
using a moving average window of 5 samples. To estimate AM fun-
damental frequency of the smoothed SPL, the first derivative of the
smoothed SPL was calculated and then transformed to the fre-
quency domain. The highest peak (Feature 19) and its correspond-
ing frequency (Feature 18) of the derivative in the frequency
domain were obtained. Also, the average ramp-up and ramp-

down of SPL were estimated by calculating mean values of positive
Input Signals }
A Frequency shape based features
| Window&Overlap  FFT
W n-1
¢

i

B
1
1
: A LAeq
1
; LCeq
1
I LGegq
1

C Time domain features
! Laeq fast Moving avg.

:(125ms, overlap 100ms)

derivative
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and negative values of the derivative signals (Feature 20 and 21,
respectively). Using the derivative signals is advantageous because
the fluctuation frequency of the derivative signal is similar to the
smoothed SPL, while its amplitude is less variant compared to
the smoothed SPL. As a result, the blade-pass frequency peaks were
clearer in the frequency domain. Feature 22 was calculated in a
similar way to feature 18, except using the unweighted SPL. Fea-
tures 23-27 are variations (calculated as Ls - Los) of the octave-
band unweighted SPL for octave-band centre frequencies between
63 Hz to 1000 Hz. The automated methods (al, a2 and a3) were
also used as noise features (Feature 28 to 31).

2.6. Evaluation metrics

The performance of the automated AM detection methods was
evaluated using both a precision-recall curve (PR) and the Mat-
thews correlation coefficient (MCC), which are well suited to
imbalanced data sets [38]. To construct the PR curve, pairs
(precision, recall) were calculated from the counts of true positives
(TP), true negatives (TN), false positives (FP) and false negatives
(EN) as follows

recall = . recision = Ll (1)
N P TP 1P
777777777 : Output features
________ -
7777777 spectral descriptors  Arithmetic
mean
Filter banks J
[ ]

Feature #1-11

I Laeq (#14)
Ratio L(;(,l‘,/L,;\m‘, (#15)

| Ratio Leeg/Laeq (#16)
|
! diff (Leeg-Lacg) (#17)
|

I

v

Peak location (#18)
Peak value (#19)
Mean neg. slope (#20)

Mean pos. slope (#21)
Cal. slope

Fig. 4. (Color online). Feature extraction.
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The aggregate metric of the MCC is a more informative and
faithful score of overall classification performance compared to
common metrics such as the accuracy or F1-score [39]. The MCC
ranges from —1 (classification is always wrong) to 0 (classification
is no better than random guessing) to 1 (classification is always
correct), and it is calculated as follows

TP x TN — FP x FN

MCC = )
/(TP + FP)(TP + EN)(IN + FP)(IN + FN)

The use of a single metric, and even an aggregate metric like
MCC, can be misleading without careful inspection of the underly-
ing results. Thus, in this study, additional metrics including
Cohen’s kappa, accuracy, area under ROC curve, etc., [38], were also
calculated as secondary results (Supplementary Table. S2).

2.7. Benchmark AM characterisation

The diurnal and seasonal variation of AM prevalence were com-
pared against previously published AM characteristics obtained
using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/)
[40]. Specifically, diurnal variation of AM prevalence was extracted
from Figures 7 and 8 in [10], Figure 12e in [9] and a mean value of
the data in Figures 4 a, c and e in [11]. The seasonal variation data
were extracted from Figure 3 (AMy4) [11] and Table 1 [13].

2.8. Data and statistical analysis

Audio signal analyses were implemented in MATLAB, in which
the noise feature extraction was implemented using the Audio
Toolbox. The random forest model was implemented using the
Statistics and Machine learning Toolbox. Statistical analysis and
visualisation were implemented in R (https://www.r-project.org).
The statistical significance threshold used was o = 0.05. All data
are reported as mean [95 % confidence interval], unless otherwise
indicated. The 95% CI range of performance metrics was estimated
using a bootstrapping method with 2,000 simulations (See Supple-
mentary Fig. S4 and Supplementary Algorithm 4 for details). Pear-
son correlation coefficients were used to examine the strength of
linear relationships between features and AM quantification
metrics.

2.9. Data availability

The MATLAB code used to extract features and build the ran-
dom forest-based AM detection method can be found in the GitHub
open repository together with the scored data set https://
github.com/ducphucnguyen/WFN_AM_Detection.

3. Results
3.1. Benchmark data set

The benchmark data set of 6,000 10-s audio files was unbal-
anced with around 40% of audio samples containing AM (Fig. 5A).
The AM confidence rating was transformed into a binary score
(AM vs. no AM) using a confidence rating threshold of three. Sam-
ples with ratings greater than three were classified as AM, and all
other samples were classified as no AM. Both positive and negative
skewness was observed from the rating distribution, indicating
high confidence in scorer rating. The MCC, Cohen’s kappa coeffi-
cient (x) and F1-score for inter-scorer agreement were (0.65
[0.49, 0.80], 0.64 [0.48, 0.8] and 0.77 [0.66, 0.87], indicating a high
degree of agreement [19] (See Supplementary Table. S3 for other
metrics). Also, intra-scorer agreement was higher than inter-
scorer agreement (MCC = 0.71 [0.56, 0.85], k = 0.7 [0.56, 0.85],
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Fig. 5. (Color online). Characteristics of benchmark data sets. A, scorer ratings
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F1-score = 0.82 [0.71, 0.91]; See supplementary Table S4 for other
metrics). Distributions of scored audio files over months, hours and
wind farm power output relative to capacity were also nearly uni-
form, consistent with ecological validity (Fig. 5B).

3.2. Benchmark AM characteristics

At the residential locations investigated, which were approxi-
mately 1 km from the nearest wind turbine, approximately 90%
of AM samples in the benchmark data set had an associated A-
weighted SPL between 30 and 50 dBA (Fig. 6A). This supports the
feasibility of using a threshold of 30 dBA to trigger AM analysis
[12], at least for data recorded at similar distances from the wind
farm. This could thus reduce false positive rates and/or exclude
samples with low SPLs which are likely to be less relevant for
assessing community annoyance. We noted that our results can
be considered as an upper bound of AM prevalence as both audible
and inaudible AM samples were quantified. The audible AM is
more relevant to human response to the noise such as annoyance
response. The prevalence of audible AM can be determined using
the approach proposed by Hansen et al. [9] by considering the nor-
mal hearing threshold curve.

There are three common metrics (i.e., AMdepth, AMfactor and
DAM) to quantify the strength of SPL variations (See Methods
and Supplementary Algorithm 1-3 for calculation details). The
magnitude of AM hereafter is referred to as the AM depth,
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despite differences in AM depth values obtained using each met-
ric. The distributions of AM depth as quantified by the three
metrics are shown in Fig. 6B-D. More than 50% of the AM sam-

ples had an AM depth greater than 2 dBA using the AMdepth and
DAM metrics, which is the fluctuation sensation threshold [41].
All three above metrics evaluated AM depth using A-weighted
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Fig. 7. (Color online). Variation of AM prevalence. A, diurnal variation. B, Seasonal variation. Previously published data are from Australia [9], Sweden [10,11] and Finland

[13].

SPLs, resulting in underestimation of the AM depth occurring at
low frequencies. The distributions of AM depth as quantified in
each octave band from 63 Hz to 1000 Hz are shown in Fig. 6E,
where it can be seen that the AM depth increased for low-
frequency bands. The modulation frequency was dominant
between 0.6 Hz and 0.8 Hz, accounting for approximately 80%

of AM samples. This frequency corresponds to the expected
blade-pass frequency when the wind turbines are operating at
their nominal speed of 14 to 16 rpm.

The AM depth is one of the most important characteristics of
AM, as its magnitude is directly related to the levels of annoyance.
Thus, to further characterise AM depth, the Pearson correlation
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coefficients (Pearson’s r) between pair metrics are shown in
Fig. 6G. Two clusters were observed from pairs as shown in the
dendrogram. The first cluster included the three above metrics
with AM depth quantified for mid- to high-frequency bands (i.e.,
500 and 1000 Hz). The second cluster included the metrics used
to quantify AM depth for low-frequency bands (i.e., 63, 125 and
250 Hz). Additionally, a linear relationship between three common
metrics is shown in 6G on the left. A strong correlation between

these metrics was observed, especially between the
AMfactor, DAM pair, followed by the AMfactor,AMdepth and
DAM, AMdepth pairs, respectively.

3.3. Diurnal and seasonal AM variation

AM appeared to be more prevalent during the evening and
night (Fig. 7A). Previous studies [9,12,11] showed that AM occurs
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approximately 20% to 40% of the nighttime (defined on the basis
of 22:00 to 6:00) and around 20% during the daytime. Amplitude
modulation was detected using method al (for the study of [9])
and method a2 (for the studies of [10,11,13]). From the compar-
ison of daytime and nighttime, it appears that although the
automated detection methods can capture a general pattern of
diurnal variation, AM prevalence was lower compared with the
benchmark data set, especially during the nighttime. Note that
AM prevalence is also substantially affected by the difference
in meteorological conditions, distance to wind farms, geographi-
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cal conditions and wind farm layout. On the other hand, seasonal
variation is likely to have a negligible effect on AM prevalence,
as shown in Fig. 7B.

3.4. Random forest-based AM detection

Hyperparameters were estimated using the out-of-bag samples,
which comprised approximately 37% of the total samples not used
for training the classifier. The hyperparameters were chosen after
500 iterations by maximising the area under the precision-recall

B False positive rate
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Fig. 9. (Color online). Performance of automated detectors. A, performance using the benchmark data set, where the values associated with each curve are mean [95%
confidence interval]. The shaded area is the 95% CI. B, false positive rate of each detection method estimated from the no wind farm noise data set. The dashed lines indicate
the AM classification threshold. C, optimal AM detection threshold according to MCC, where negative values indicate performance worse than by chance.
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curve (AUPRC), [42] (Fig. 8A). The optimal hyperparameter settings
were: 1,024 trees, a maximum of 16 features, a maximum of 2,048
splits and a minimum of 4 samples in the leaf nodes. The precision-
recall curve in Fig. 8B shows the optimal random forest classifier
based on these hyperparameters with AUPRC = 0.85 [0.84, 0.86]
(See Supplementary Table. S4 for other metrics).

Some selected features may not useful for AM prediction given
a cluster of highly correlated variables in the dendrogram (showing
the hierarchical relationship between features) and high Pearson
correlation coefficient in Fig. 8C. The four most important features
for predicting AM are AMfactor,SpectralCrest, diffLCLA and PR
(Fig. 8D).

3.5. Performance of the automated detectors

The performance of the random forest-based AM detection
method was compared to three automated detectors (al-a3) on
precision-recall plots (Fig. 9A). The test set for detectors al-a3
was all samples in the benchmark data set while the out-of-bag
samples were used as the test set for the random forest detector.
The random forest-based method outperformed the other methods
(ANOVA P-value < 0.001), with an AUPRC of 0.85. The performance
of a1-a3 was poor with the mean AUPRC ranging from 0.43 to 0.55
(Table 4). The performance of al was better than a2 and a3 (all
P < 0.001), and a2 performed better than a3 (P < 0.001).

The performance of AM detection algorithms has previously
been described in terms of the false positive rate (FPR) [12,7],
and thus this metric was also examined (Fig. 9B). As the random
forest classifier is based on probabilistic values, a threshold of 0.5
was used for binary classification of AM. Thus, if more than 50%
of trees in the classifier voted for “AM”, the sample was classified
as an AM sample, otherwise “no AM” was declared. The cut-of
values for method al-a3 were 4, 0.2 and 2, respectively (See
Methods section). The false positive rate of the random forest
classifier was low (1.6%) compared to methods al-a3 (50%, 19%
and 62%, respectively). The false positive rate of methods al
and a3 was not reported in the original descriptions of these
methods [7,15], but was reported to be 2.6% for method a2
[12], and thus substantially lower than in our data set analysed
in this study.

To evaluate if the performance of all detectors could be
improved using different threshold values, thresholds for each
method were varied systematically to find the highest MCC values
as shown in Fig. 9C. The optimal threshold for the random forest
classifier was 0.44 (44% of trees voted “AM”). The optimal thresh-
old for method a1 was PR = 6.7, which is higher than the original
reported value of PR =4 in [7] and the value obtained using a
Receiver Operating Characteristic curve (PR = 3) in [9]. In contrast,
the optimal thresholds for method a2 and a3 were lower than the
original suggested values [12,15]. For comparison, the MCC
between two scorers was calculated and considered as the ceiling
value for the AM detection task (MCC = 0.65), supporting that the
performance of the random forest classifier was remarkably close
to human performance. We further investigated if the performance
of automated methods could be improved when using only sam-
ples corresponding with certain responses of the scorer (i.e., sure
AM with responses > 4.5 vs sure no AM with responses < 1.5).
The performance of all automated methods increased, especially

Table 4

Area under the precision-recall curves and optimal MCC for the four methods.
Method AUPRC Max MCC
Random forest 0.85[0.84 0.86] 0.62
al 0.55[0.52 0.58] 0.29
a2 0.47 [0.45 0.49] 0.32
a3 0.43 [0.40 0.44] 0.28
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Fig. 10. (Color online). A simplified single tree classifier utilising the four most
important features identified by the random forest classifier for AM detection.

the Random Forest based method, which showed an approximately
22% increase in performance (MCC = 0.76, Fig. 9C). This was
expected as clearer AM or no AM events were likely detected with
higher confidence.

3.6. Interpretable predictor

The random forest classifier with 31 features and 1,024 trees
outperformed traditional detection methods and showed perfor-
mance comparable with human classifiers. However, random for-
est classifiers work much like a black box, making them difficult
to interpret. The classifier also requires skilled human and com-
puter resources to implement. Given the findings of the impor-
tance of AMfactor,diffLCLA, SpectralCrest and PR features, this
study thus aimed to build a simplified classifier, which can be used
as a simpler and more portable classifier for AM detection. This
simplified classifier was a single decision tree built from four fea-
tures, as shown in Fig. 10. The performance of the single decision
tree showed AUCPR = 0.68 [0.64, 0.71], which is lower than the ran-
dom forest classifier, yet still higher than methods al-a3. These
results further illustrate that a simple combination of several fea-
tures outperforms traditional single feature detection methods.

4. Discussion

In summary, we presented a new and promising approach to
characterise AM in a large data set using an expert human scoring
method. The resulting estimates of benchmark AM characteristics
such as AM depth, frequency, and diurnal and seasonal variations
are important for validation and calibration of the results using
automated methods. We further show that it is possible to develop
an advanced AM detection method with a predictive power close
to the practical limit set by human scoring. This approach shows



P.D. Nguyen, K.L. Hansen, B. Lechat et al.

major promise as an effective automated tool which could be used
for detecting WFN AM presence in large data sets, such as for
research or to support wind farm noise regulations.

Although AM identification by humans was a benchmark
approach to establish high quality scored data, it is striking to
find that an advanced machine learning algorithm performed
close to the human limit. In fact, AM is a challenging signal to
detect, as its characteristics vary depending on meteorological
conditions. As a result, the spectral content and time varying
features are not constant. Despite these changes, the human audi-
tory system can still recognize the presence of wind farm AM.
Thus, our presented algorithm sought to incorporate the most
important acoustical features predictive of human scored AM.
The selected features cover the whole range of the most domi-
nant WFN characteristics, including noise level variation (or
AM), tonality and low-frequency content. Two of the features
incorporate noise level variations (AMfactor and PR); the differ-
ence between LCeq and LAeq is an indicator of low-frequency
noise presence; and the spectral crest provides a simple measure
of tonality. These findings support the idea that human percep-
tion of AM is more complex than assumed by previous AM detec-
tion methods that are based on noise level variations alone.
Hence, it is not surprising that the method presented here
achieved substantial improvements in performance compared to
previous methods.

Very high false positive rates were found for methods a1-a3,
which is inconsistent with previous reports in [12,7]. However, it
is worth noting that method a1 was originally designed and eval-
uated on 10-min samples, as opposed to the 10-s samples used
in our work, and method al classifies AM if more than 50% of
10-s blocks within 10 min contain AM. By introducing the above
criterion, the false positive rate may be substantially reduced, as
reported in [7]. However, 10-s long samples appear to have higher
validity, as typical AM events usually last around 10-15 s [12].
With regards to the false positive rate for method a2, an arbitrary
30 dBA Lyeq cut-off was imposed in the original evaluation, which
was not used in our study, and likely helps to explain the large dis-
crepancy between the originally reported 2.6% [12] and the 19%
false positive rate in our study. If the 30 dBA cut-off is applied to
our data before method a2 is used to detect AM, the false positive
rate is reduced from 19% to 9%. This number is expected to further
reduce if data were measured in a quiet area, where many samples
would have associated noise levels less than 30 dBA. Therefore,
these findings further support that false positive rate metrics are
problematic for evaluating detection performance [19], as this only
represents one parameter in a confusion matrix.

A limitation of the present study is the under-representation of
noise data measured greater than 1 km. As a result, the benchmark
AM characteristics are not relevant at other distances. The pro-
posed classifier also may not work well for detecting AM measured
several kilometers from the nearest wind turbine, where AM may
have different characteristics [9]. The classifier could not be tested
on data sets measured outside of South Australia, where weather
conditions and topography near wind farms will inevitably vary.
Although the reliability of human scoring has been tested, using
a single scorer to classify the AM is not ideal. Human scoring is a
subjective process, for which intra- and inter-scorer variability
should be expected [43]. We used a single scorer to identify the
presence of AM to minimise inter-scorer variability effects which
are typically higher than intra-scorer variability. Nevertheless, it
remains unclear how generalizable these findings may be to AM
more broadly, for which inter-scorer differences as well as noise
source and climatic effects could be important. As suggested by
Wendt et al. [43], two or more scorers and a consensus scoring
approach may be preferable to a single scorer to help ensure
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broader generalisability. Future studies should examine if resi-
dents living near wind farms identify AM similarly to acoustician
and algorithm scored AM, and how strongly AM identification rat-
ings are related to annoyance ratings. Nevertheless, a single scorer
is more practical and avoids the potential effects of poor inter-
scorer agreement. Also, good inter-scorer agreement was found
in a smaller subset of the data, supporting this approach.

Although detector a1 clearly warrants improvements in order to
increase accuracy, the source code [30] is readily available, making
it easy to understand the methodology and to implement the
method. Although the other methods were reproduced as closely
as possible, our codes may be different from the original codes.
This is a similar problem previously identified for the reproduction
of the tonality assessment code in Sendergaard et al. [44]. Thus,
depositing source code to open source repositories, together with
relevant data sets would greatly advance the development of prac-
tical and robust amplitude modulation detection methods.

5. Conclusions

In conclusion, this study demonstrated that human scoring is a
feasible and promising approach to identify AM. This approach is
invaluable for detecting unique characteristics of wind farm noise
in cases where the performance of automated detectors is low or
not validated. The advanced AM detector based on the random for-
est approach demonstrated high performance, and substantially
outperformed traditional AM detection methods to achieve a clas-
sification performance close to that of humans. It was also shown
that a simplified classifier based on a single decision tree using
the four main features identified through the random forest
approach also achieved good classification performance. This
approach is readily interpretable and easy to implement without
the need for extensive computer resources. We hope that, in the
future, further insight into the prevalence of AM and associated
meteorological conditions, and impacts on humans will help to
explain underlying noise generation mechanisms relevant to
human perception. Ultimately, this will improve the design of wind
turbines such that they are less disturbing and hence, more accept-
able to surrounding communities.
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