July 1, 1979

2MW MOD-1 Turbine installed
To trial industrial-level wind energy generation in the US, the 5th operational wind turbine is installed near Boone, North Carolina.
September 1, 1979

First complaints received from a dozen families within a 3km radius of turbine.

Much to everyone's surprise, complaints were made by some residents (see dots on image for location). The annoyance was described as an intermittent "thumping" sound accompanied by vibrations. .. A "feeling" or "presence" was described, felt rather than heard, accompanied by sensations of uneasiness and personal disturbance. .. The "sounds" were louder and more annoying inside the affected homes. .. Some rattling of loose objects occurred. In one or two severe situations, structural vibrations were sufficient to cause loose dust to fall from high ceilings, which created an additional nuisance.
October 1, 1979 — January 1, 1981

Wind turbine operation creates enormous sound pressure waves

Many collaborators, including NASA and SERI fully investigated acoustic, seismic and atmospheric aspects using turbine operational information and data recordings in a series of field experiments (the NASA research). This image from the field studies shows the sound pressure caused by rotating blades passing the tower.

![Sound Pressure Level Graph]

Figure 3-3. Typical Pressure-Time Plot of MOD-1 Acoustic Emissions Containing Strong Period Impulses. (Two complete rotor revolutions and four blade passages)
March 1, 1982

Householders are exposed to Low Frequency Noise (LFN) from wind turbines while indoors.

NASA’s Guide to the evaluation of human exposure to noise from large turbines - 'Receiver exposure' includes noise evaluation inside homes.
Closed windows and doors do not protect occupants from LFN

Further NASA research showed that even with windows shut, houses do not stop LFN sound energy. Measured levels inside the home are significantly higher than predicted within the LFN range. The house acts like a drum for LFN.

There are very few data available at the low frequencies (below 50 Hz). In this range the wavelengths are comparable to the dimensions of the rooms and there is no longer a diffuse sound field on the inside (ref. 29). Other complicating factors are the role of stiffness at these lower frequencies and the existence of pressure leaks. The inside distribution of pressure can be non-uniform because of standing wave patterns, organ pipe modes and cavity resonances due to room, closet and hall way configurations. The anticipated large variation of sound pressure levels from one location to another at very low excitation frequencies has not been documented for houses. Thus, it is difficult to characterize the low frequency noise environment inside a house structure based on a knowledge of the outside noise environment.
March 3, 1982

Turbine redesign from downwind to upwind does not fix LFN problem

The position of the turbine was thought to contribute to the problem. The MOD-1 wind turbine was a downwind turbine. The acoustics of upwind turbines were investigated. A change in configuration of the turbine did change the noise profile, however, as the blades still must pass a tower, LFN sound pressure emissions remain high.

Figure A-2.- Acoustic sources for a downwind horizontal axis wind turbine generator
September 1, 1982

NASA research on human impacts provided to wind industry

Wind industry is provided with research through this summary article in the Noise Control Engineering Journal. It describes noise-induced house responses, including frequencies, mode shapes, acceleration levels and outside-to-inside noise reductions. The role of house vibrations in reactions to environmental noise is defined and some human perception criteria are reviewed.
Noise inside homes worse than outside

More NASA research shows that house structure excitation from wind turbine operation is similar to the sonic boom created by jet aircraft passing overhead. Interior noise can be greater than outside noise. Many people complain that wind turbines sound like a jet that never lands - this is why. There is an overlap between the peak acceleration level (vibration measure) and peak sound pressure levels within two structures that had been excited by commercial jets, helicopters and wind turbines.
January 3, 1985

Hypothesis for infrasound-induced motion sickness

It was known that not every one responded to infrasound in the same way and studies were commenced to determine the possible 'transducers' for infrasound in the human body and explore how they might differ between individuals. People who suffer from infrasound were found to be measurably different to people who did not. The resulting hypothesis proposes the differences are related to anatomical differences (diameter of inner ear), neural responsiveness as well as processing of information in the brain (central nervous system). Clear parallels to motion sickness was made.
February 1, 1985

Major research on community annoyance from wind turbine released

Extensive NASA research established the origin and possible amelioration of acoustic disturbances associated with the operation of the MOD-1 wind turbine. Results show that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the LFN impulses propagated into the structures of the homes in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing.
Laboratory simulation of wind turbine annoyance conducted

Kelley continued researching the annoyance from wind turbines in a 'laboratory situation'. A testing facility was constructed and furnished with a control room, listening room and speaker room. Subjects were exposed to LFN emission profiles similar to that detected in the MOD-1 turbine and asked to rate their annoyance.

Concrete Slab Floors Covered with 1.6cm Resilient Carpeting

Figure 5. PLAN VIEW SCHEMATIC OF PHYSICAL ARRANGEMENT OF TESTING FACILITIES
November 2, 1987

Wind turbine annoyance measured

Participants rated their perceptions in various LFN environments using this scale, recording noise, annoyance, vibration and pulsations.

Table 2. SUBJECTIVE RANKING CRITERIA FOR LOW-FREQUENCY (LF) NOISE ENVIRONMENTS

<table>
<thead>
<tr>
<th>Rank</th>
<th>Stimuli Response Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Perception</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Noise level (loudness)
- Can't hear
- Barely can hear
- Weak, but definitely audible
- Moderate loudness
- High noise level, loud
- Very high noise level, very loud

Annoyance/displeasure
- None
- Barely aware of presence
- Definitely aware of presence
- Moderate distraction/some irritation
- Very annoying, irritating
- Extremely annoying, uncomfortable

Vibration/pressure
- None
- Feel presence
- Definitely feel vibration/pressure
- Moderate vibration/pressure feeling
- Very noticeable
- Severe vibration

Pulsations
- None
- Barely feel pulses
- Define pulses or bumping
- Moderate booming or thumping
- Heavy booming or thumps
- Very heavy pulses, booms, thumps

Acceptable

Clearly unacceptable
Lab studies confirm dB(A) worst noise measure for predicting annoyance

Of all the noise filters tested, dB(A) was shown to be the worst of all at predicting annoyance from LFN.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Noise Level</th>
<th>Annoyance/Displeasure</th>
<th>Vibration/Pressure</th>
<th>Pulsations</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>0.898</td>
<td>0.933</td>
<td>0.709</td>
<td>0.819</td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.018)</td>
<td>(0.170)</td>
<td>(0.115)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>G₂</td>
<td>0.873</td>
<td>0.879</td>
<td>0.701</td>
<td>0.769</td>
<td>0.806</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.053)</td>
<td>(0.157)</td>
<td>(0.148)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>LSPL</td>
<td>0.898</td>
<td>0.924</td>
<td>0.711</td>
<td>0.831</td>
<td>0.841</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.034)</td>
<td>(0.155)</td>
<td>(0.107)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>LSL</td>
<td>0.935</td>
<td>0.958</td>
<td>0.732</td>
<td>0.860</td>
<td>0.871</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.014)</td>
<td>(0.174)</td>
<td>(0.097)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>C</td>
<td>0.940</td>
<td>0.947</td>
<td>0.725</td>
<td>0.841</td>
<td>0.863</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.008)</td>
<td>(0.187)</td>
<td>(0.098)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>A</td>
<td>0.384</td>
<td>0.269</td>
<td>0.413</td>
<td>-0.077</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>(0.464)</td>
<td>(0.413)</td>
<td>(0.137)</td>
<td>(0.719)</td>
<td>(0.433)</td>
</tr>
</tbody>
</table>
Wind industry told that dB(A) unsuitable to measure LFN emissions from wind turbines

Wind industry informed of how to predict annoyance from LFN emissions from wind turbines at Windpower '87 Conference. Kelley explains how to measure LFN emissions that annoy neighbours of wind farms. LFN can be intensified inside homes. The dB(A) filter cuts out all the LFN and is therefore unsuitable. G-weighted scales were better correlated with noise, annoyance, vibration and pulsations.
January 2, 1988

End of NASA research

This was essentially the end of almost a decade of NASA research into the unexpected annoyance of wind turbine operation on neighbours. It revealed the fundamental flaw - the turbines blades passing the tower, which generates huge pressure waves - LFN emissions. Depending on topography, weather and the location of houses and turbines, some LFN emissions were focussed and reacted with homes. The sensation from LFN emission generated many complaints. The levels were higher inside the homes than outside. LFN can not be detected when dB(A) filters are applied. Susceptible people experience a range of symptoms including motion-sickness-like symptoms.
January 1, 1995

Wind developers regroup and respond to NASA research, creating the Noise Working Group

Seven years have passed. In an attempt kick start the wind industry again, a group of mostly wind farm developers, calling themselves the Noise Working Group was established in the UK by the Department of Trade and Industry and through the Energy Technology Support Unit (ETSU - now called Future Energy Solutions). They met and created a set of procedures for measuring wind farm noise. Their aim was to promote the development of the wind industry, without the burden of dealing with community annoyance.

Members of the Noise Working Group:

Mr R Meir, Chairman DTI
Dr M L Legerton, Secretary ETSU
Dr M B Anderson Renewable Energy Systems
Mr B Berry National Physical Laboratory
Dr A Bullmore Hoare Lea and Partners
Mr M Hayes The Hayes McKenzie Partnership
Mr M Jiggins Carrick District Council
Mr E Leeming The Natural Power Company Ltd
Dr P Musgrove National Wind Power Ltd
Mr D J Spode North Cornwall District Council
Mr H A Thomas Isle of Anglesey County Council
Ms E Tomalin EcoGen Ltd
Mr M Trinick Bond Pearce Solicitors
Dr J Warren National Wind Power Ltd
Noise Working Group produce ETSU-R-97 guidelines for assessing wind turbine noise

Noise standard document produced by the Noise Working Group makes it plain that its purpose is to create guidelines that will promote the development of the wind industry by not placing "unreasonable restrictions on wind farm development or adding unduly to the costs and administrative burdens on wind farm developers or local authorities."
September 2, 1996

ETSU deliberately excludes testing inside homes

Without any supportive evidence, a 10 dB(A) buffer is assumed to occur inside homes compared to outside. No need to take measurements inside just deduct this 10 dB(A) from outside noise level readings and say that this is equivalent to the inside noise level.

3.11 Further down page 60 it says that *On balance it is considered that a margin of 5dB(A) (by which it means 7dB in BS4142 terms) will offer a reasonable degree of protection to both the internal and external environment without unduly restricting the development of wind energy which itself has other environmental benefits.* There is no foundation whatsoever for this assertion. No evidence is brought forward or referred to.

3.12 So the position in the argument so far is this. The NWG has decided, without any foundation, that the 5dB “marginal significance” in BS4142 could be 7dB. It has decided, against all normal practice, that the background noise level for assessment purposes ought to be the average of background levels in any particular condition rather than the lowest level. In wind controlled background noise the average is likely to be at least 4dB more than a realistic background level. So the NWG consider that 11dB over background is appropriate for wind farms as against normal practice for industrial noise of 5dB over background noise. Of course I have to bear in mind that ETSU-R-97 does not purport to offer a method of assessment of impact. So the NWG is proposing that, for wind farms, a level of noise that is likely to give rise to complaints is appropriate because of the particular public benefits of wind farms. I cannot agree with this. As I exemplify elsewhere other projects of public benefit have to meet the stricter standard of 5dB above background.
ETSU sets night time noise limit higher than day time limit

ETSU sets night time noise limit high of 43dB(A), while day time limit is 37-42 dB(A). Critics write "The conclusions of ETSU-R-97 are so badly argued as to be laughable in parts (the daytime standard is based on the principle that it does not matter if people cannot get to sleep on their patio so long as they can get to sleep in their bedrooms). It is the only standard where the permissible night time level is higher than the permissible day time level."
ETSU avoids measuring LFN from wind turbines

The sampling and filtering protocols in ETSU remove the dominant LFN component of the noise emissions from wind turbines.

Noise measurement

ETSU requires noise levels to be measured using the ‘L_{A90 10min}’ measurement. In this case the ‘A’ indicates the A weighting measurement that most closely accords with the sensitivity of the human ear. However, given the significant low frequency content of wind turbine noise, the use of the C weighting measurement has been suggested by some acousticians and audiologists [Ref 38] to better indicate the true noise impact.

The ‘90’ indicates the measurement of the noise level exceeded for 90% of the time. This measurement is effective for broadband noise such as traffic noise but not when measuring intermittent noise as produced by wind turbines. Some acousticians have proposed using the L_{A50} measurement [ETSU Ref 1 page 16] that indicates the noise level exceeded for 50% of the time or the L_{Aeq} the measurement indicating the equivalent continuous sound pressure level.

The ‘10 min’ indicates the measurement is averaged over a 10 min period. This may work effectively when measuring broadband noises such as traffic noise but not when measuring intermittent noise as produced by wind turbines. It has already been proposed that the L_{Aeq 125 milliseconds} measurement be used to monitor for excess amplitude modulation.
September 7, 1996

ETSU does not measure aerodynamic modulation

Wind turbines emit highly intrusive LFN thumping noises (excess amplitude modulation) that are essentially filtered out and ignored by the measurement protocols recommended in the ETSU, thereby failing to protect residents from this annoyance. The noise is comparable to that of helicopters. Because of its LFN nature, the annoyance can be experienced at significant distances from turbines.

1. There is a phenomenon called aerodynamic modulation (AM) that causes wind turbine noise to take on a loud, "thumping" character and to become audible at a considerable distance from the wind turbines.

2. The fluctuating (amplitude modulated) noise caused by aerodynamic modulation is more noticeable and annoying than broadband noise of the same sound level.

3. The Government is aware of the existence of aerodynamic modulation and has acknowledged that it can be an issue in the case of planning applications for wind farms close to residences in low background noise areas. The Government has, however, refused to take action to update the noise guidelines embodied in ETSU-R-97.

4. The noise monitoring recommended in ETSU-R-97 is totally ineffective in protecting residents from aerodynamic modulation noise, because the specified noise descriptor (LA90, 10min) ignores the noisiest 90% of each ten-minute measurement period and gives a result based on the loudest noise during the quietest 10% of the period.

5. ETSU-R-97’s recommendation that noise monitoring is carried out at the nearest noise sensitive properties fails to take account of the fact that aerodynamic modulation noise can be heard at considerable distances from a wind farm and can be difficult to detect closer to the wind farm.
ETSU silent on wind shear and LFN propagation

Wind shear occurs when wind speed at upper levels is higher than at lower elevations, which is common at night. This means there is more noise emitted and less masking of the noise at homes. Instead, the ETSU assumes as wind turbine noise increases, there will be a proportional increase in background noise due to increased wind speed.
October 1, 1996

ETSU falsely elevates background noise readings to hide noise produced by wind turbines

Under ETSU, background noise levels set the benchmark for turbine noise criteria. ETSU artificially elevated background levels by using techniques such as poor microphone shielding, limiting monitoring locations, sample size, sample time of day, sample duration, survey period, sample processing.
February 1, 2003 — March 1, 2003

Australian 1st wind farm noise guidelines follow ETSU

South Australian EPA release Environmental Noise Guidelines: Wind Farms. The allowable noise limit is set at 35 dB(A). Section 2.2 specifies that the noise criteria for a new wind farm development should not exceed 35 dB(A). The guidelines follow ETSU: use of dB(A) as the exclusive noise measure; deliberating excluding LFN and testing inside homes. In relation to LFN and infrasound it writes: "The EPA has consulted the working group and completed an extensive literature search but is not aware of infrasound being present at any modern wind farm site". The EPA had never carried out any field research to support that assertion.
Wind industry knows noise models inadequate

At a Australian Wind industry conference, AUSWEA, Eric Sloth from Vestas presented collaborative research findings (Vestas, Bonus, Delta - later named as Siemens) that confessed that their noise prediction models were inadequate and further research was required.
July 27, 2007

Australian wind industry increases turbine noise limit from 35 dB(A) to 40 dB(A)

This letter from the EPA confirms that the development manager from Wind Prospect was able to convince the SA EPA to up the allowable turbine noise limit from 35 dB(A) to 40 dB(A).
Sixty years of WHO research shows sleep deprivation, caused by noise, is a serious adverse health effect.

The WHO reviews the available evidence and concludes sleep deprivation can lead to consequences for health and well-being. They write: "Sleep is a biological necessity and disturbed sleep is associated with a number of adverse impacts on health.... (and) is viewed as a health problem in itself (environmental insomnia), (as) it also leads to further consequences for health and well-being"
July 1, 2009

New version of EPA guidelines - limit up to 40 dB(A)

New version of SA EPA Environmental Noise Guidelines: Wind Farms. For no other reason than wind industry lobbying, the allowable noise limit is increased from 35 dB(A) to 40 dB(A). The guidelines continue to follow ETSU: use of dB(A) as the exclusive noise measure; deliberating excluding LFN and testing inside homes. In relation to LFN and infrasound it continues to assert: "The EPA has consulted the working group and completed an extensive literature search but is not aware of infrasound being present at any modern wind farm site". The EPA had never carried out any field research to support that assertion.
July 3, 2009

Wind turbine syndrome described

Dr. Nina Pierpont explains how turbine infrasound and LFN create the range of symptoms associated with Wind Turbine Syndrome. Case histories provided as supporting data.
Infrasound also generated by movement of the turbine tower

In a study to investigate and mitigate LFN and infrasound from wind turbines that interfere with seismic monitoring to detect nuclear detonations, it was shown that the wind turbine tower itself moves and this is another source of infrasound.
June 29, 2011

Vestas knew that low frequency noise from larger turbines needed greater setbacks

This is a letter from the CEO of Vestas, lobbying the Danish government not to bring in significant noise regulations, admitting that low frequency noise from larger turbines will increase setback distances needed for neighbours.
December 1, 2011

Draft NSW guidelines for wind farms released for discussion

New guidelines for wind farm operation are drafted. Some LFN testing proposed and C-weighting used. Lower noise limits (drop from 40 to 35 dB(A) are proposed. 2km setback. No in home testing performed.
March 1, 2012

Vestas attempt to avoid LFN measurement

Wind turbine manufacturer Vestas implores NSW government to remove any reference to LFN and exclude any testing, Also ask for noise limits to stay at 40 dB(A).
August 1, 2013

Wind developers refuse to cooperate with noise impact studies

Paul Schomer, George Hessler and Rob Rand investigates the Shirley Wisconsin wind farm acoustic annoyance and concludes "Most residents do not hear the wind-turbine sound; noise annoyance is not an issue. The issue is physiological responses that result from the very low-frequency infrasound and which appears to be triggering motion sickness in those who are susceptible to it." Schomer laments the difficulty of studying wind turbine annoyance when developers refuse to cooperate by allowing on-off testing.
September 1, 2014

Cones of wind turbine infrasound hypothesis and motion sickness

Kevin Dooley proposes that 'cones' of infrasound exposure from wind turbines is related to motion sickness symptoms.
October 1, 2014

Ontario Council enacts new by-law including infrasound from wind farms

Under the bylaw, if a resident complains about infrasound, the municipality would hire an engineer qualified to take the measurements before laying a charge. If a company is found guilty – can range from $500 to $10,000 per offense and could exceed $100,000 if the offense continues. The municipality recoups the cost of the specialized testing under the bylaw.
October 1, 2014

US Wind farm declared 'Hazard to Human Health'

The Brown County Board of Health declared the Shirley-Wisconsin wind farm a “… Human Health Hazard for all people (residents, workers, visitors, and sensitive passersby) who are exposed to Infrasound/Low Frequency Noise and other emissions potentially harmful to human health.”
November 1, 2014

Infrasonic wind turbine signature in homes

Private noise testing still was happening inside peoples homes because they were suffering. However this was happening without the co-operation of the wind turbine operators. They refuse to provide on-off testing to demonstrate that the turbines are causing the infrasonic pulses inside their homes or provide hub-height wind speed data to determine wind shear. One such study was underway at Waterloo South Australia when a cable fault allowed de facto on-off testing to be conducted. They demonstrate that the 'wind turbine signature' of the pulses created by the blades passing the tower is only evident when turbines are operational.

![Comparison of outdoor and indoor narrow-band spectra with local wind conditions similar to wind farm shutdown conditions](image-url)
November 14, 2014

Cause and effect relationship established - Turbine LFN and human sensation of annoyance in homes

Commissioned by Pacific Hydro, and performed by Steven Cooper at Cape Bridgewater with 6 individuals who kept diaries of the sensations they were experiencing. Parallel in-home testing of turbine noise revealed wind turbine signature and its presence correlated with annoyance as recorded in participant diaries. A cause and effect relationship is undeniable.
Evidence mounts that wind turbines impact on health

21 peer reviewed papers on the adverse health effects of wind turbines
Sleep deprivation by wind turbine noise: a dose-response relationship identified

Danish study concludes that noise from wind turbines increases the risk of annoyance and disturbed sleep in exposed subjects in a dose-dependent relationship. The higher the dose or exposure to LFN and infrasound, the worse the disruption to sleep.
RESEARCH ARTICLE

Health Effects Related to Wind Turbine Noise Exposure: A Systematic Review

Jesper Hvass Schmidt1,2,3,*, Mads Klokker4,5
1. Institute of Clinical Research, University of Southern Denmark, Odense, Denmark, 2. Department of Audiology, Odense University Hospital, Odense, Denmark, 3. Department of ENT Head and Neck Surgery, Odense University Hospital, Odense, Denmark, 4. Department of ENT Head and Neck Surgery & Audiology, Copenhagen University Hospital, Copenhagen, Denmark, 5. Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

*jesper.schmidt@rydh.dk

Abstract

Background: Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise.

Objective: This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects.

Data Sources: A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources.

Study Eligibility Criteria: All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included.

Results: Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache.

Limitations: Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed.

Conclusions: Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship.
February 14, 2015

The story so far ...

We have now come full circle - just as was found 30 years ago - the dB(A) noise filter is totally irrelevant, infrasound LFN is the cause of adverse health effects and as this is not attenuated, but is often amplified by structures, in-home testing must be used to protect neighbours. Find out more, as the story continues to develop through the Waubra Foundation, a not-for-profit organisation that represents the communities that have been adversely impacted by wind turbines.
Advocating full spectrum noise measurements

Welcome to the Waubra Foundation. Our website caters for a variety of users and is evolving with new resources and the latest news. If you are new to this topic, our introductory page is a great place to start. You can also watch the Resident Impact Videos where the residents themselves explain how the turbines affect them.

Giving hope to Residents

Welcome to the Waubra Foundation. Our website caters for a variety of users and is evolving with new resources and the latest news. If you are new to this topic, our introductory page is a great place to start. You can also watch the Resident Impact Videos where the residents themselves explain how the turbines affect them.